Advertisement

American Journal of Potato Research

, Volume 95, Issue 3, pp 311–316 | Cite as

An In Vitro Assay Method for Resistance to Bacterial Wilt (Ralstonia solanacearum) in Potato

  • Ippei HabeEmail author
Short Communication
  • 185 Downloads

Abstract

To develop an in vitro assay method for bacterial wilt resistance in potato, resistant and susceptible standard genotypes were grown in vitro, and different conditions of inoculation with Ralstonia solanacearum phylotype I/biovar 4 were examined. The optimal condition was the inoculation of 6–8 leaf stage plants with a bacterial concentration of 102 CFU ml−1 and an incubation temperature of 28 °C. Evaluation of stem wilting was more reliable than that of leaf wilting. Using this method, nine genotypes with different resistance levels in the field were evaluated. Lower disease indices were obtained for genotypes with high resistance levels in the field, suggesting that this assay is useful for evaluating bacterial wilt resistance in a controlled environment.

Keywords

Phylotype I/biovar 4 Growth chamber Controlled environment Cultured plantlet 

Resumen

A fin de desarrollar un método de un ensayo in vitro para resistencia de la papa al marchitamiento bacterial, se cultivaron in vitro genotipos estándar resistentes y susceptibles, y se examinaron diferentes condiciones de inoculación con Ralstonia solanacearum filotipo l/biovar 4. La condición óptima fue la inoculación de plantas en un estado de 6–8 hojas con una concentración bacteriana de 102 CFU ml-1, y una temperatura de incubación de 28 °C. La evaluación de la marchites del tallo fue más confiable que la de la hoja. Utilizando este método se evaluaron nueve genotipos con diferentes niveles de resistencia en el campo. Se obtuvieron índices más bajos de enfermedad para genotipos con altos niveles de resistencia en el campo, lo que sugiere que este ensayo es útil para evaluar la resistencia a la marchites bacteriana en un ambiente controlado.

Notes

Acknowledgements

I thank Dr. Kazuyoshi Hosaka, Obihiro University of Agriculture and Veterinary Medicine, for useful comments and improving the manuscript.

This study was performed in compliance with the laws of Japan, where the experiments were conducted.

References

  1. Adhikari, T.B., and R.C. Basnyat. 1998. Effect of crop rotation and cultivar resistance on bacterial wilt of tomato in Nepal. Canadian Journal of Plant Pathology 20: 283–287.CrossRefGoogle Scholar
  2. Chaparro, J.M., A.M. Sheflin, D.K. Manter, and J.M. Vivanco. 2012. Manipulating the soil microbiome to increase soil health and plant fertility. Biology and Fertility of Soils 48: 489–499.CrossRefGoogle Scholar
  3. Elphinstone, J.G. 1994. Inheritance of resistance to bacterial diseases. In Potato Genetics, ed. J.E. Bradshaw and G.R. Mackay, 429–446. Wallingford: CAB international.Google Scholar
  4. Fegan, M., and P. Prior. 2005. How complex is the ‟Ralstonia solanacearum species complex”? In Bacterial wilt: The disease and the Ralstonia solanacearum species complex, ed. C. Allen, P. Prior, and A.C. Hayward, 449–461. St. Paul: American Phytopathological Society.Google Scholar
  5. Fox, J. 2005. The R commander: A basic statistics graphical user interface to R. Journal of Statistical Software 14: 1–42.Google Scholar
  6. Frank, M.P., P. Graebing, and J.S. Chib. 2002. Effect of soil moisture and sample depth on pesticide photolysis. Journal of Agricultural and Food Chemistry 50: 2607–2614.CrossRefPubMedGoogle Scholar
  7. Gonzalez, L.C., L. Sequeira, and P.R. Rowe. 1973. A root inoculation technique to screen potato seedlings for resistance to Pseudomonas solancearum. American Potato Journal 50: 96–104.CrossRefGoogle Scholar
  8. Guo, J.H., H.Y. Qi, Y.H. Guo, H.L. Ge, L.Y. Gong, L.X. Zhang, and P.H. Sun. 2004. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biological Control 29: 66−72.CrossRefGoogle Scholar
  9. Hayward, A.C. 1964. Characteristics of Pseudomonas solanacearum. Journal of Applied Bacteriology 27: 265–277.CrossRefGoogle Scholar
  10. Hayward, A.C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology 29: 65–87.CrossRefPubMedGoogle Scholar
  11. Hayward, A.C. 1994. The hosts of Pseudomonas solanacearm. In Bacterial wilt: The disease and its causative agent, Pseudomonas solanacearum, ed. A.C. Hayward, and G.L. Hartman, 9–25. Wallingford: CAB International.Google Scholar
  12. Hendrick, C., and L. Sequeira. 1984. Lipopolysaccharide-defective mutants of the wilt pathogen Pseudomonas solanacearum. Applied and Environmental Microbiology 48: 94–101.PubMedPubMedCentralGoogle Scholar
  13. Horita, M., Y. Suga, A. Ooshiro, and K. Tsuchiya. 2010. Analysis of genetic and biological characters of Japanese potato strains of Ralstonia solanacearum. Journal of General Plant Pathology 76: 196–207.CrossRefGoogle Scholar
  14. Horita, M., and K. Tsuchiya. 2001. Genetic diversity of Japanese strains of Ralstonia Solanacearum. Phytopathology 91: 399–407.CrossRefPubMedGoogle Scholar
  15. Horita, M., K. Tsuchiya, Y. Suga, K. Yano, T. Waki, D. Kurose, and N. Furuya. 2014. Current classification of Ralsotnia solanacearum and genetic diversity of the strains in Japan. Journal of General Plant Pathology 80: 455–465.CrossRefGoogle Scholar
  16. Jaworski, C.A., R.E. Webb, R.W. Goth, and S.C. Phatak. 1980. Relative resistance of potato cultivars to bacterial wilt. American Potato Journal 57: 159–165.CrossRefGoogle Scholar
  17. Ji, P., M.T. Momol, S.M. Olson, and P.M. Pradhanang. 2005. Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Disease 89: 497–500.CrossRefGoogle Scholar
  18. Katayama, K., and S. Kimura. 1984. Prevalence and temperature requirements of biovar II and IV strains of Pseudomonas solanacearum from potatoes. Japanese Journal of Phytopathology 50: 476–482.CrossRefGoogle Scholar
  19. Katayama, K., and S. Kimura. 1986. Ecology and protection of bacterial wilt of potato: 1. Ecology and strains of P.solanacearum (in Japanese). 1986. The Bulletin of Nagasaki Prefectural Agricultural and Forestry Experiment Stations 14: 1–30.Google Scholar
  20. Kelman, A. 1954. The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance in a tetrazolium medium. Phytopathology 44: 693–695.Google Scholar
  21. Kurihara, H., H. Nishikawa, K. Tabata, and T. Okubo. 1963. Studies on relationship between cultural conditions and growing process in potato crop (in Japanese). The Bulletin of Tohoku National Agricultural Experiment Stations 28: 143–200.Google Scholar
  22. Mendoza, H.A. 1988. Progress in resistance breeding in potatoes as a function of efficiency of screening procedures. In Bacterial disease of the potato. Report of planning conference, 39–64. Lima: International Potato Center.Google Scholar
  23. Montanelli, C., A. Chiari, T. Chiari, F. Stefanini, and G. Nascari. 1995. Evaluation of resistance to Pseudomonas solanacearum in potato under controlled conditions. Euphytica 81: 35–43.CrossRefGoogle Scholar
  24. Mori, K., K. Asano, S. Tamiya, T. Nakao, and M. Mori. 2015. Challenges of breeding potato cultivars to grow in various environments and to meet different demands. Breeding Science 65: 3–16.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mori, K., N. Mukojima, T. Nakao, S. Tamiya, Y. Sakamoto, N. Sohbaru, K. Hayashi, H. Watanuki, K. Nara, K. Yamazaki, T. Ishii, and K. Hosaka. 2012. Germplasm release: Saikai 35, a male and female fertile breeding line carrying Solanum phureja-derived cytoplasm and potato cyst nematode resistance (H1) and Potato virus Y resistance (Ry chc) genes. American Journal of Potato Research 89: 63–72.CrossRefGoogle Scholar
  26. Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15: 473–497.CrossRefGoogle Scholar
  27. Nakaho, K., S. Takaya, and Y. Sumida. 1996. Condition that increase latent infection of grafted or non-grafted tomatoes with Pseudomonas solanacearum. Japanese Journal of Phytopathology 62: 234–239.CrossRefGoogle Scholar
  28. Navarro, S., N. Vela, and G. Navarro. 2007. An overview on the environmental behaviour of pesticide residues in soils. Spanish Journal of Agricultural Research 5: 357–375.Google Scholar
  29. Patil, V.U., J. Gopal, and B.P. Singh. 2012. Improvement for bacterial wilt resistance in potato by conventional and biotechnological approaches. Agricultural Research 1: 299–316.CrossRefGoogle Scholar
  30. R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org.
  31. Rokunuzzaman, M., A. Hayakawa, S. Yamane, S. Tanaka, and K. Ohnishi. 2016. Effect of soil disinfection with chemical and biological methods on bacterial communities. Egyptian Journal of Basic and Applied Sciences 3: 141–148.Google Scholar
  32. Sakamoto, Y., K. Mori, Y. Matsuo, N. Mukojima, W. Watanabe, N. Sobaru, S. Tamiya, T. Nakao, K. Hayashi, H. Watanuki, K. Nara, K. Yamazaki, and M. Chaya. 2017. Breeding of a new potato variety ‘Nagasaki Kogane’ with high eating quality, high carotenoid content, and resistance to diseases and pests. Breeding Science 67: 320–326.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Suga, Y., M. Horita, M. Umekita, N. Furuya, and K. Tsuchiya. 2013. Pathogenic characters of Japanese potato strains of Ralstonia solanacearum. Journal of General Plant Pathology 79: 110–114.CrossRefGoogle Scholar
  34. Yabuuchi, E., Y. Kosako, I. Yano, H. Hotta, and Y. Nishiuchi. 1995. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov., Ralstonia solanacearum (Smith 1986) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiology and Immunology 39: 897–904.CrossRefPubMedGoogle Scholar

Copyright information

© The Potato Association of America 2018

Authors and Affiliations

  1. 1.Nagasaki Agricultural and Forestry Technical Development CenterNagasakiJapan

Personalised recommendations