Skip to main content
Log in

Salicylic Acid-Cryotherapy Treatment for Elimination of Potato Virus S from Solanum Tuberosum

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Potato virus S (PVS) is one of the most difficult viruses to eliminate by thermotherapy due to its thermal deactivation point. Pre-treatment methods involving salicylic acid (SA) have been successfully carried in conjugation with cryogenic methods to reduce oxidative damage and eliminate viruses. In the present investigation, the effect of SA to protect Solanum tuberosum plants infected with PVS from oxidative damage from subsequent cryotherapy was studied. Vulnerable genotypes to cryogenic protocol were selected, with two SA treatments examined. Potato clones were pretreated with SA (0, 10−5, and 10−6 M), plant development was evaluated and then exposed to cryotherapy. This was followed up by a plant development evaluation and virus testing. After the initial treatment with SA, the plants exhibited an increase in the variables evaluated before cryotherapy. After cryotherapy, between 66.6% and 100% of the treated plants were found to be virus-free compared to control plants which exhibited 0% survival. Thus, the SA-cryotherapy treatment combination described appears to enhance plant survival and eliminate PVS from potato plants.

Resumen

El virus de la papa S (PVS) es uno de los más difíciles de eliminar por termoterapia debido a su punto de desactivación térmica. Los pretratamientos de ácido salicílico (AS) se han probado con éxito en métodos criogénicos para reducir el daño oxidativo y para la limpieza del virus mediante termoterapia. En la presente investigación, se estudió el efecto de AS como protector al daño oxidativo por crioterapia en plantas de Solanum tuberosum infectadas con PVS. Genotipos vulnerables a protocolo criogénico fueron seleccionados y probados con dos tratamientos de AS. Clones de papa fueron pretratados con AS (0, 10−5, and 10−6 M), se evaluó el desarrollo de las plantas y posteriormente se expusieron a crioterapia, seguido de evaluación del desarrollo de las plantas y prueba de presencia de virus. Las plantas tratadas con AS aumentaron las variables evaluadas antes de la crioterapia. Después de la crioterapia, se obtuvo un 66.6–100% de plantas libres de virus en comparación con el testigo, que mostró una supervivencia del 0%. La combinación de crioterapia AS mejoró la supervivencia y, por lo tanto, facilitó la limpieza de virus PVS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguilar-Camacho, M., M. Mora-Herrera, and H. López-Delgado. 2016. Potato virus X (PVX) elimination a short- and long-term effects of hydrogen peroxide and salicylic acid is differentially mediated by oxidative stress in synergism. American Journal of Potato Research 9: 360–367.

    Article  CAS  Google Scholar 

  • Arfan, M., H.R. Athar, and M. Ashraf. 2007. Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? Journal of Plant Physiology 164 (6): 685–694.

    Article  CAS  PubMed  Google Scholar 

  • Arizaga, M.V., O.F.V. Navarro, C.R.C. Martínez, E.J.C. Gutiérrez, H.A.L. Delgado, S.I. Yamamoto, and T. Niino. 2016. Improvement to the D Cryo-plate protocol applied to practical cryopreservation of in vitro grown potato shoot tips. The Horticulture Journal 86 (2): 222–228.

    Article  Google Scholar 

  • Asada, K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology 141 (2): 391–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benson, E.E., M. Wilkinson, A. Todd, U. Ekuere, and J. Lyon. 1996. Developmental competence and ploidy stability in plants regenerated from cryopreserved potato shoot-tips. CryoLetters 17: 119–128.

    Google Scholar 

  • Bittner, H., G. Schenk, G. Schuster, and S. Kluge. 1989. Elimination by chemotherapy of potato virus S from potato plants grown in vitro. Potato Research 32: 175–179.

    Article  Google Scholar 

  • Brison, M., M.T. Boucaud, A. Pierronnet, and F. Dosba. 1997. Effect of cryopreservation on the sanitary state of a cv prunus rootstock experimentally contaminated with plum pox potyvirus. Plant Science 123: 189–196.

    Article  CAS  Google Scholar 

  • Cassels, A.C., and R.D. Long. 1982. The elimination of potato viruses X, Y, S and M in meristem and explants culture of potato in the presence of virazole. Potato Research 25: 165–173.

    Article  Google Scholar 

  • Chen, Z., H. Silva, and D.F. Klessig. 1993. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262 (5141): 1883–1886.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z., J. Malamy, J. Henning, U. Conrath, P. Sánchez-Casas, H. Silva, and D.K. Klessig. 1995. Induction, modification, and transduction of the salicylic acid signal in plant defense responses. Proceedings of the National Academy of Sciences 92 (10): 4134–4137.

    Article  CAS  Google Scholar 

  • Chen, G.Q., L. Ren, J. Zhang, B.M. Reed, D. Zhang, and X.H. Shen. 2015. Cryopreservation affects ROS-induced oxidative stress and antioxidant response in Arabidopsis seedlings. Cryobiology 70 (1): 38–47.

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy, V., J. Zhu, and J.K. Zhu. 2007. Cold stress regulation of gene expression in plants. Trends in Plant Science 12 (10): 444–451.

    Article  CAS  PubMed  Google Scholar 

  • Clark, M.F., and A.N. Adams. 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology 34 (3): 475–483.

    Article  CAS  PubMed  Google Scholar 

  • Dat, J., S. Vandenabeele, E. Vranová, M. Van Montagu, D. Inzé, and F. Van Breusegem. 2000. Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences 57 (5): 779–795.

    Article  CAS  PubMed  Google Scholar 

  • De Bokx, J.A. 1972. Spread of potato virus S. Potato Research 15 (1): 67–70.

    Article  Google Scholar 

  • Ding, F., S. Jin, N. Hong, Y. Zhong, Q. Cao, G. Yi, and G. Wang. 2008. Vitrification–cryopreservation, an efficient method for eliminating Candidatus Liberobacter asiaticus, the citrus Huanglongbing pathogen, from in vitro adult shoot tips. Plant Cell Reports 27 (2): 241–250.

    Article  CAS  PubMed  Google Scholar 

  • Dowling, D. K. and L. W. Simmons 2009. Reactive oxygen species as universal constraints in life-history evolution. Proceedings of the Royal Society of London B: Biological Sciences. rspb-2008.

  • Duncan, D.B. 1955. Multiple range and multiple F tests. Biometrics 11 (1): 1–42.

    Article  Google Scholar 

  • Echevarría-Machado, I., R.M. Escobedo-G.M., and A. Larqué-Saavedra. 2007. Plant Physiology and Biochemistry 45: 501–507.

    Article  CAS  PubMed  Google Scholar 

  • El Tayeb, M.A., and N.L. Ahmed. 2010. Response of wheat cultivars to drought and salicylic acid. American-Eurasian Journal of Agronomy 3: 1–7.

    Google Scholar 

  • Elwan, M.W.M., and M.A.M. El-Hamahmy. 2009. Improved productivity and quality associated with salicylic acid application in greenhouse pepper. Scientia Horticulturae 122: 521–526.

    Article  CAS  Google Scholar 

  • Espinoza, N.O., R. Estrada, D. Silva-Rodríguez, P. Tovar, R. Lizarraga, and J.H. Dodds. 1986. The potato: A model crop plant for tissue culture. Outlook on Agriculture 15 (1): 21–26.

    Article  Google Scholar 

  • Faccioli, G., and A. Colombarini. 1996. Correlation of potato virus S and virus M contents of potato meristem tips with the percentage of virus-free plantlets produced in vitro. Potato Research 39: 129–140.

    Article  CAS  Google Scholar 

  • Grout, B.W.W., and G.G. Henshaw. 1978. Freeze preservation of potato shoot-tip cultures. Annals of Botany 42 (181): 1227–1229.

    Article  Google Scholar 

  • Gutiérrez-Coronado, M.A., C. Trejo-López, and A. Larqué-Saavedra. 1998. Effect of salicylic acid on the growth of roots and shoots in soybean. Plant Physiology and Biochemistry 36: 563–565.

    Article  Google Scholar 

  • Hara, M., J. Furukawa, A. Sato, T. Mizoguchi, and K. Miura. 2012. Abiotic stress and role of salicylic acid in plants. In Abiotic stress responses in plants, 235–251. New York: Springer.

    Chapter  Google Scholar 

  • Harding, K., and E.E. Benson. 2001. The use of microsatellite analysis in Solanum tuberosumin vitro plantlets derived from cryopreserved germplasm. Cryo Letters 22 (3): 199–208.

    CAS  PubMed  Google Scholar 

  • Hayat, S., Q. Fariduddin, B. Ali, and A. Ahmad. 2005. Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agronomica Hungarica 53: 433–437.

    Article  CAS  Google Scholar 

  • Helliot, B., Panis B, Poumay Y, Swennen R, Lepoivre P, and Frison E. 2002. Cryopreservation for elimination of cucumber mosaic and banana streak viruses from banana (Musa spp.). Plant Cell Reports 20: 1117–1122.

    Article  CAS  Google Scholar 

  • Horvath, E., G. Szalai, and T. Janda. 2007. Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation 26 (3): 290–300.

    Article  CAS  Google Scholar 

  • Janda, T., G. Szalai, K. Rios-Gonzalez, O. Veisz, and E. Páldi. 2003. Comparative study of frost tolerance and antioxidant activity in cereals. Plant Science 164: 301–306.

    Article  CAS  Google Scholar 

  • Johnston, J.W., K. Harding, and E.E. Benson. 2007. Antioxidant status and genotypic tolerance of Ribes in vitro cultures to cryopreservation. Plant Science 172 (3): 524–534.

    Article  CAS  Google Scholar 

  • Kang, H.M., and M.E. Saltveit. 2002. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiologia Plantarum 115 (4): 571–576.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M.I.R., M. Fatma, T.S. Per, N.A. Anjum, and N.A. Khan. 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science 6: 462.

    PubMed  PubMed Central  Google Scholar 

  • Klein, R.E., and C.H. Livingston. 1983. Eradication of potato viruses X and S from potato shoot tip cultures with ribavirin. Phytopathology 73: 1049–1050.

    Article  Google Scholar 

  • Knörzer, O.C., B. Lederer, J. Durner, and P. Böger. 1999. Antioxidant defense activation in soybean cells. Physiologia Plantarum 107: 294–302.

    Article  Google Scholar 

  • Kovácik, J., J. Grúz, M. Backor, M. Strnad, and M. Repcák. 2009. Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Reports 28: 135–143.

    Article  CAS  PubMed  Google Scholar 

  • Kushnarenko, S., N.V. Romadanova, M. Aralbayeva, S. Zholamanova, A. Alexandrova, and O. Karpova. 2017. Combined ribavirin treatment and cryotherapy for efficient potato virus M and potato virus S eradication in potato (Solanum tuberosum L.) in vitro shoots. In Vitro Cellular & Developmental Biology. Plant 53: 425–432.

    Article  CAS  Google Scholar 

  • Lambardi and Caccavale. 2000. Cryopreservation of white poplar (Populus alba L.) by vitrification of in vitro-grown shoot tips. Plant Cell Reports 19: 213–218.

    Article  PubMed  Google Scholar 

  • Larkindale, J., and B. Huang. 2004. Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. Journal of Plant Physiology 161: 405–413.

    Article  CAS  PubMed  Google Scholar 

  • Larqué-Saavedra, A., R. Martín-Mex, A. Nexticapan-Garcéz, S. Vergara-Yoisura, and M. Gutiérrez-Rendón. 2010. Efecto del ácido salicílico en el crecimiento de plántulas de tomate (Lycopersicon esculentum Mill.). Rev. Chapingo Serie Hortic 16: 183–187.

    Article  Google Scholar 

  • Li, Y., C. Liu, T. Li, C. Wang, Y. Xiao, L. Zhang, D. Jin, Y. Zhao, Z. Wang, J. Cao, and L. Hao. 2011. Regulatory role of exogenous salicylic acid in the response of Zoysia japonica plants to freezing temperatures: A comparison with cold-acclimatisation. The Journal of Horticultural Science and Biotechnology 86: 277–283.

    Article  CAS  Google Scholar 

  • Lin, Y.H., J.A. Abad, C.J. Maroon-Lango, K.L. Perry, and H.R. Pappu. 2014. Molecular characterization of domestic and exotic potato virus S isolates and a global analysis of genomic sequences. Archives of Virology 159 (8): 2115–2122.

    Article  CAS  PubMed  Google Scholar 

  • López-Delgado, H., J.F. Dat, C.H. Foyer and. I.M. Scott. 1998. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedling. Journal of Experimental Botany 49:713–772.

  • López-Delgado, H., M.E. Mora-Herrera, H.A. Zavaleta-Mancera, M. Cadena-Hinojosa, and I.M. Scott. 2004. Salicylic acid enhanced heat tolerance and potato virus X (PVX) elimination during thermotherapy of potato microplants. American Journal of Potato Research 81: 171–176.

    Article  Google Scholar 

  • López-Delgado, H.A., R. Martínez-Gutiérrez, M.E. Mora-Herrera, and Y. Torres-Valdés. 2018. Induction of freezing tolerance by the application of hydrogen peroxide and salicylic acid as tuber-dip or canopy spraying in Solanum tuberosum L. plants. Potato Research 61 (3): 195–206.

    Article  CAS  Google Scholar 

  • Lynch, P.T., A. Siddika, J.W. Johnston, S.M. Trigwell, A. Mehra, C. Benelli, M. Lambardi, and E.E. Benson. 2011. Effects of osmotic pretreatments on oxidative stress, antioxidant profiles and cryopreservation of olive somatic embryos. Plant Science 181 (1): 47–56.

    Article  CAS  PubMed  Google Scholar 

  • Martin, R.R., and J.D. Postman. 1999. Phytosanitary aspects of plant germplasm conservation. Plant Conservation & Biotechnology: 63–82.

  • Martínez-Gutiérrez, R., M.E. Mora-Herrera, and H.A. López-Delgado. 2012. Exogenous H2O2 in phytoplasma-infected potato plants promotes antioxidant activity and tuber production under drought conditions. American Journal of Potato Research 89 (1): 53–62.

    Article  CAS  Google Scholar 

  • Matos, J., 2004. Efectos de la aplicación de bajas concentraciones de Ácido Salicílico a semillas de tomate (lycopersicom esculentum Mill. variedad Vyta) sobre algunos indicadores fisiológicos y agronómicos. Universidad de Granma. 35p.

  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7: 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R., S. Vanderauwera, M. Gollery, and F. Van Breusegem. 2004. Reactive oxygen gene network of plants. Trends in Plant Science 9: 490–498.

    Article  CAS  Google Scholar 

  • Miura, K., and Y.Y. Tada. 2014. Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science 5: 1–12.

    Article  Google Scholar 

  • Møller, I.M., P.E. Jensen, and A. Hansson. 2007. Oxidative modifications to cellular components in plants. Annual Review of Plant Biology 58: 459–481.

    Article  CAS  PubMed  Google Scholar 

  • Mora-Herrera, M., and H. López-Delgado. 2006. Tolerancia a baja temperatura inducida por ácido salicílico y peróxido de hidrógeno en microplantas de papa. Revista Fitotecnia Mexicana 29: 81–85.

    Google Scholar 

  • Mora-Herrera, M.E., H. López-Delgado, A. Castillo-Morales, and C.H. Foyer. 2005. Salicylic acid and H2O2 function by independent pathways in the induction of freezing tolerance in potato. Physiologia Plantarum 125 (4): 430–440.

    CAS  Google Scholar 

  • Morelli, J.K., and M.E. Vayda. 1996. Mechanical wounding of potato tubers induces replication of potato virus S. physiological and molecular plant pathology. Physiological and Molecular Plant Pathology 49 (1): 33–47.

    Article  CAS  Google Scholar 

  • Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15: 473–497.

    Article  CAS  Google Scholar 

  • Naik, P.S., and S.P. Khurana. 2003. Micropropagation in potato seed production: Need to revise seed certification standards. J. Indian Potato Assoc 30: 267–273.

    Google Scholar 

  • Niino, T., and M.V. Arizaga. 2015. Cryopreservation for preservation of potato genetic resources. Breeding Science 65 (1): 41–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathirana, R., A. McLachlan, D. Hedderley, B. Panis, and F. Carimi. 2016. Pre-treatment with salicylic acid improves plant regeneration after cryopreservation of grapevine (Vitis spp.) by droplet vitrification. Acta Physiologiae Plantarum 38 (1): 12.

    Article  CAS  Google Scholar 

  • Pennycooke, J.C., and L.E. Towill. 2000. Cryopreservation of shoot tips from in vitro plants of sweet potato [Ipomoea batatas (L.) Lam.] by vitrification. Plant Cell Reports 19 (7): 733–737.

    Article  CAS  PubMed  Google Scholar 

  • Quak, F. 1977. Meristem culture and virus free plants. In Applied and fundamental aspects of plant cell, tissue and organ culture, ed. J. Reinert and Y.P.S. Bajaj, 616–635. New York: Springer-Verlag.

    Google Scholar 

  • Romero-Romero, M.T., and H.A. López-Delgado. 2009. Ameliorative effects of hydrogen peroxide, ascorbate and dehydroascorbate in Solanum tuberosum infected by phytoplasma. American Journal of Potato Research 86 (3): 218–226.

    Article  CAS  Google Scholar 

  • Rose, D.G. 1983. Some properties of an unusual isolate of potato virus S. Potato Research 26: 49–62.

    Article  Google Scholar 

  • Sakhabutdinova, A.R., D.R. Fatkhutdinova, M.V. Bezrukova, and F.M. Shakirova. 2003. Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulg J Plant Physiol 29: 314–319.

    Google Scholar 

  • Salari, K., H. Massumi, J. Heydarnejad, A. Hosseini, and A. Varsani. 2011. Analysis of Iranian potato virus S isolates. Virus Genes 43: 281–288.

    Article  CAS  PubMed  Google Scholar 

  • Salisbury, F.B., and C.W. Ross. 1994. Fisiología vegetal, 759. México: Grupo Editorial Iberoamérica.

    Google Scholar 

  • Sánchez-Chávez, E., R. Barrera-Tovar, E. Muñoz-Márquez, D.L. Ojeda-Barrios, and A. Anchondo-Nájera. 2011. Efecto del ácido salicílico sobre biomasa, actividad fotosintética, contenido nutricional y productividad del chile jalapeño. Revista Chapingo Serie Horticultura 17: 63–66.

    Article  Google Scholar 

  • Sánchez-Rojo, S., H.A. López-Delgado, M.E. Mora-Herrera, H.I. Almeyda-León, H.A. Zavaleta-Mancera, and D. Espinosa-Victoria. 2011. Salicylic acid protects potato plants-from phytoplasma-associated stress and improves tuber photosynthate assimilation. American Journal of Potato Research 88 (2): 175–183.

    Article  CAS  Google Scholar 

  • San-Miguel, R., M. Gutiérrez, and A. Larqué-Saavedra. 2003. Salicylic acid increases the biomass accumulation of Pinus patula. Southern Journal of Applied Forestry 27: 52–54.

    Article  CAS  Google Scholar 

  • Savaldi-Goldstein, S., C. Peto, and J. Chory. 2007. The epidermis both drives and restricts plant shoot growth. Nature 446: 199–202.

    Article  CAS  PubMed  Google Scholar 

  • Scott, I.M., J.F. Dat, H. López-Delgado, and C.H. Foyer. 1999. Salicylic acid and hydrogen peroxide in abiotic stress signaling in plants. Phyton 39: 13–17.

    CAS  Google Scholar 

  • Serrano, I., M.C. Romero-Puertas, L.M. Sandalio, and A. Olmedilla. 2015. The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. Journal of Experimental Botany 66 (10): 2869–2876.

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff, N. 1996. Botanical briefing: The function and metabolism of ascorbic acid in plants. Annals of Botany 78 (6): 661–669.

    Article  CAS  Google Scholar 

  • Tada-Oikawa, S., T. Kato, K. Kuribayashi, K. Nishino, M. Murata, and S. Kawanishi. 2008. Critical role of hydrogen peroxide in the differential susceptibility of Th1 and Th2 cells to tributyltin-induced apoptosis. Biochemical Pharmacology 75 (2): 552–561.

    Article  CAS  PubMed  Google Scholar 

  • Takahama, U. 2004. Oxidation of vacuolar and apoplastic phenolic substrates by peroxidase: Physiological significance of the oxidation reactions. Phytochemistry Reviews 3 (1–2): 207–219.

    Article  CAS  Google Scholar 

  • Tansgın, E., Ö. Atıcı, B. Nalbantoglu, and L.P. Popova. 2006. Effects of salicylic acid and cold treatments on protein levels and on the activities of antioxidant enzymes in the apoplast of winter wheat leaves. Phytochemistry 67: 710–715.

    Article  CAS  Google Scholar 

  • Taşgín, E., Ö. Atící, and B. Nalbantoğlu. 2003. Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regulation 41 (3): 231–236.

    Article  Google Scholar 

  • Tatone, C., G. Di Emidio, M. Vento, R. Ciriminna, and P.G. Artini. 2010. Cryopreservation and oxidative stress in reproductive cells. Gynecological Endocrinology 26 (8): 563–567.

    Article  PubMed  Google Scholar 

  • Thordal-Christensen, H., Z. Zhang, Y. Wei, and D.B. Collinge. 1997. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—Powdery mildew interaction. The Plant Journal 11 (6): 1187–1194.

    Article  CAS  Google Scholar 

  • Tucuch, H.C.J., G. Alcántar, and S.A. Larqué. 2015. Efecto del ácido salicílico en el crecimiento de la raíz y biomasa total de plántulas de trigo. Terra Latinoamericana 33 (1): 63–68.

    Google Scholar 

  • Tucuch-Haas, C.J., G. Alcántar-González, V. Volke-Haller, Y. Salinas-Moreno, L. Trejo-Téllez, and A. Larqué-Saavedra. 2016. Revista Mexicana de Ciencias Agrícolas 7 (3): 709–716.

    Article  Google Scholar 

  • Villanueva-Couoh, E., G. Alcántar-González, P. Sánchez-García, M. Soria-Fregoso, and A. Larque-Saavedra. 2009. Efecto del ácido salicílico y dimetilsulfóxido en la floración de [Chrysanthemum morifolium (Ramat) Kitamura] en Yucatán. Revista Chapingo Serie Horticultura 15: 25–31.

    Article  Google Scholar 

  • Wang, Q.C., and J.P.T. Valkonen. 2008a. Elimination of two viruses which interact synergistically from sweetpotato using shoot tip culture and cryotherapy. Journal of Virological Methods 154: 135–145.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q.C., and J.P.T. Valkonen. 2008b. Efficient elimination of sweet potato little leaf phytoplasma from sweetpotato by cryotherapy of in vitro grown shoot tips. Plant Pathology 57: 338–347.

    Article  Google Scholar 

  • Wang, Q., and J.P. Valkonen. 2009. Cryotherapy of shoot tips: Novel pathogen eradication method. Trends in Plant Science 14 (3): 119–122.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., P. Li, Ö. Batuman, R. Gafny, and M. Mawassi. 2003a. Effect of benzyladenine on recovery of cryopreserved shoot tips of grapevine and citrus cultured in vitro. Cryo Letters 24 (5): 293–302.

    PubMed  Google Scholar 

  • Wang, Q.C., M. Munir, P. Li, R. Gafny, I. Sela, and E. Tanne. 2003b. Plant Science 165: 321–327.

    Article  CAS  Google Scholar 

  • Wang, Q., Y. Liu, Y. Xie, and M. You. 2006. Cryotherapy of potato shoot tips for efficient elimination of potato leafroll virus (PLRV) and potato virus Y (PVY). Potato Research 49 (2): 119–129.

    Article  Google Scholar 

  • Wang, Q.C., W.J. Cuellar, M.-L. Rajamäki, Y. Hiraka, and J.P.T. Valkonen. 2008. Combined thermotherapy and cryotherapy for efficient virus eradication: Relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Molecular Plant Pathology 9 (2): 237–250.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Z.M. Yang, Q.F. Zhang, and J.L. Li. 2009. Enhanced chilling tolerance in Zoysia matrella by pre-treatment with salicylic acid, calcium chloride, hydrogen peroxide or 6-benzylaminopurine. Biologia Plantarum 53 (1): 179–182.

    Article  CAS  Google Scholar 

  • Waswa, M., R. Kakuhenzire, and M. Ochwo-Semakula. 2017. Effect of thermotherapy duration, virus type and cultivar interactions on elimination of potato viruses X and S in infected seed stocks. African Journal of Plant Science 11 (3): 61–70.

    Article  CAS  Google Scholar 

  • Xia, X.J., Y.H. Zhou, K. Shi, J. Zhou, C.H. Foyer, and J.Q. Yu. 2015. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. Journal of Experimental Botany 66 (10): 2839–2856.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, S., R.T. Wunna, M. Valle Arizaga, K. Fukui, E. Cruz Gutierrez, C. Castillo Martinez, K. Watanabe, and T. Niino. 2015. The aluminum cryo-plate increases efficiency of cryopreservation protocols for potato shoot tips. American Journal of Potato Research 92: 250–257.

    Article  Google Scholar 

  • Yang, L., N. Bihua, J. Liu, and B. Song. 2013. A reexamination of the effectiveness of ribavirin on eradication of viruses in potato plantlets in vitro using ELISA and Quantitative RT-PCR. American Journal of Potato Research 91: 304–312.

    Article  CAS  Google Scholar 

  • Yardimci, N., K.H. Culal, and Y. Demir. 2015. Detection of PVY, PVX, PVS, PVA, and PLRV on different potato varieties in Turkey using DAS-ELISA. Journal of Agricultural Science and Technology 17 (3): 757–764.

    Google Scholar 

  • Zarghami Moghaddam, M., M. Shoor, A. Ganjeali, N. Moshtaghi, and A. Tehranifar. 2014. Effect of salicylic acid on morphological and ornamental characteristics of Petunia hybrida at drought stress. Indian Journal of Fundamental and Applied Life Sciences 4: 523–532.

    Google Scholar 

Download references

Acknowledgments

We knowledge to M.C. Guadalupe Ríos Dominguez and Ing Rocio Sara Valentina Hernández Sánchez, from the pathology laboratory of ICAMEX for performing DAS-ELISA tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto A. López-Delgado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Sáenz, D.R., Ayala-Hernández, D.D., Niino, T. et al. Salicylic Acid-Cryotherapy Treatment for Elimination of Potato Virus S from Solanum Tuberosum. Am. J. Potato Res. 96, 225–234 (2019). https://doi.org/10.1007/s12230-018-09694-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-018-09694-4

Keywords

Navigation