American Journal of Potato Research

, Volume 95, Issue 3, pp 258–271 | Cite as

Economic and Risk Effects of Rotation Based on a 14-Year Irrigated Potato Production Study in Manitoba

  • Mohammad KhakbazanEmail author
  • Ramona M. Mohr
  • Jianzhong Huang
  • Erik Campbell
  • Karl M. Volkmar
  • Dale J. Tomasiewicz
  • Alan P. Moulin
  • Doug A. Derksen
  • Byron R. Irvine
  • Debra L. McLaren
  • Alison Nelson


Crop rotations can be used to optimize economic return by preserving or enhancing soil quality and reducing pest pressure. A field experiment consisting of six rotations of potato with canola (P-C), wheat (P-W), canola-wheat (P-C-W), oat-wheat (P-O-W), wheat-canola-wheat (P-W-C-W), and canola underseeded to alfalfa-alfalfa-alfalfa (P-C(A)-A-A) organized in a Randomized Complete Block Design was established on a clay loam soil in Manitoba, Canada and monitored for fourteen years to assess the relative economic performance of potato in each rotation. A stochastic budget based on returns and risk of returns trade-offs was used to determine each rotation’s profitability. While differences in average annual net income of all crops between rotations were not significant, the P-C-W rotation was the most stable. Despite the economic advantage of P-C in the first two cycles, longer P-C-W or P-C(A)-A-A rotations are recommended, as two-year rotations increase plant disease and decrease economic viability in the long run.


Potato Crop rotation Cost Net income Risk analysis 


Las rotaciones de cultivos pueden usarse para optimizar la recuperación económica mediante la preservación o aumento de la calidad del suelo y en la reducción de presión de plagas. Se estableció un experimento de campo consistente en seis rotaciones de papa con canola (P-C), trigo (P-W), canola-trigo (P-C-W), avena trigo (P-O-W), trigo-canola-trigo (P-W-C-W), y canola mezclada con alfalfa-alfalfa-alfalfa (P-C(A)-A-A) organizado en un diseño de bloques completos al azar, en un suelo arcillo-limoso en Manitoba, Canadá, y monitoreado por 14 años para evaluar el comportamiento relativo económico de papa en cada rotación. Se usó un presupuesto estocástico basado en recuperaciones y en el riesgo de compensaciones de recuperaciones para determinar la redituabilidad de cada rotación. Mientras que las diferencias en el promedio anual de ingresos netos de todos los cultivos entre rotaciones no fueron significativas, la rotación P-C-W fue la más estable. A pesar de la ventaja económica de P-C en los primeros dos ciclos, se recomiendan las rotaciones más largas P-C-W o P-C(A)-A-A, ya que las rotaciones de dos años aumentan enfermedad de la planta y a la larga disminuyen la viabilidad económica.



We thank Desiree Czerkawski, Shirley Neudorf, Grant Gillis, Tom Henderson, Clayton Jackson, Rebecca Xie, and summer students at AAFC-Brandon Research and Development Centre for field and technical support on this project. Funding contributions from Agriculture and Agri-Food Canada’s Matching Investment Initiative and in-kind contributions from the Canada-Manitoba Crop Diversification Centre (a partnership among Manitoba potato growers, the potato processing industry and the Governments of Canada and Manitoba) are greatly appreciated.


  1. Bezdicek, D.F., and D. Granatstein. 1989. Crop rotation efficiencies and biological diversity in farming systems. American Journal of Alternative Agriculture 4: 111–118.CrossRefGoogle Scholar
  2. Campbell, C.A., and R.P. Zentner. 1993. Soil organic matter as influenced by crop rotations and fertilization. Soil Science Society of America Journal 57: 1034–1040.CrossRefGoogle Scholar
  3. Carter, M.R., and J.B. Sanderson. 2001. Influence of conservation tillage and rotation length on potato productivity, tuber disease and soil quality parameters on a fine sandy loam in eastern Canada. Soil & Tillage Research 63: 1–13.CrossRefGoogle Scholar
  4. Christenson, D., R. Gallagher, T. Harrington, and J. Black. 1995. Net returns from 12 cropping systems containing sugar beet and navy bean. Journal of Production Agriculture 8: 276–281.CrossRefGoogle Scholar
  5. Doster, D.H., D.R. Griffith, J.V. Mannenng, and S.D. Parsons. 1983. Economic returns from alternative corn and soybean tillage systems in Indiana. Journal of Soil & Water Conservation 38: 504–508.Google Scholar
  6. Entz, M.H., V.S. Baron, P.M. Carr, D.W. Meyer, S.R. Smith, and W.P. McCaughey. 2002. Potential of forages to diversify cropping systems in the northern Great Plains. Agronomy Journal 94: 240–250.CrossRefGoogle Scholar
  7. Eviews quantitative software, 2006. Accessed 30 Jun 2017.
  8. Frans, R., R. Talbert, D. Marx, and H. Crowley. 1986. Experimental design and techniques for measuring and analyzing plant responses to weed control practices. In Research methods in weed science, ed. N.D. Camper, 3rd ed., 37–38. Champaign: Southern Weed Science Society.Google Scholar
  9. Guertal, E.A., E.M. Bauske, and J.H. Edwards. 1997. Crop rotation effects on sweet potato yield and quality. Journal of Production Agriculture 10 (1): 70–73.CrossRefGoogle Scholar
  10. Halloran, J.M., T.S. Griffin, and C.W. Honeycutt. 2005. An economic analysis of potential rotation crops for Maine potato cropping systems. American Journal of Potato Research 82: 155–162.CrossRefGoogle Scholar
  11. Halloran, J. M., R. P. Larkin, and C.W. Honeycutt. 2008. The economic impacts of disease suppressive rotations in Maine potato cropping systems. Accessed 15 May 2017.
  12. Hardaker, J.B., and G. Lien. 2010. Stochastic efficiency analysis with risk aversion bounds: A comment. The Australian Journal of Agricultural and Resource Economics 54: 379–383.CrossRefGoogle Scholar
  13. Hardaker, J.B., J.W. Richardson, G. Lien, and K.D. Schumann. 2004. Stochastic efficiency analysis with risk aversion bounds: A simplified approach. Australian Journal of Agricultural Research 48: 253–270.CrossRefGoogle Scholar
  14. Havlin, J.L., D.E. Kissel, L.D. Maddux, M.M. Claassen, and J.H. Long. 1990. Crop rotation and tillage effects on soil organic carbon and nitrogen management. Soil Biology and Biochemistry 28: 733–738.Google Scholar
  15. Helmers, G.A., M.R. Langemeier, and J. Atwood. 1986. An economic analysis of alternative cropping systems for east-central Nebraska. American. Journal of Production Agriculture 1: 153–158.Google Scholar
  16. Hesterman, O.B., C.C. Sheaffer, and E.I. Fuller. 1986. Economic comparisons of crop rotations including alfalfa, soybean and corn. Agronomy Journal 78: 24–28.CrossRefGoogle Scholar
  17. Honeycutt, C.W., W.M. Clapham, and S.S. Leach. 1995. Influence of crop rotation on selected chemical and physical soil properties in potato cropping systems. American Potato Journal 72: 721–735.CrossRefGoogle Scholar
  18. Johnson, R.G., and M.B. Ali. 1982. Economics of wheat-fallow cropping systems in western North Dakota. Western Journal of Agricultural Economics 15: 67–77.Google Scholar
  19. Kachanoski, R.G., and M.R. Carter. 1999. Landscape position and soil redistribution under three soil types and land use practices in Prince Edward Island. Soil & Tillage Research 51: 211–217.CrossRefGoogle Scholar
  20. Khakbazan, M., C. Hamilton, A. Moulin, K. Belcher, R. Mohr, K. Volkmar, and D. Tomasiewicz. 2009a. Modeling economic and agro-environmental dynamics of potato production systems. Journal of Bioeconomics 11: 65–93.CrossRefGoogle Scholar
  21. Khakbazan, M., R.M. Mohr, D.A. Derksen, M.A. Monreal, C.A. Grant, R.P. Zentner, A.M. Moulin, D.L. McLaren, R.B. Irvine, and C.N. Nagy. 2009b. Effects of alternative management practices on the economics, energy and GHG emissions of a wheat-pea cropping system. Journal of. Soil and Tillage Research 104: 30–38.CrossRefGoogle Scholar
  22. Khakbazan, M., R.M. Mohr, K.M. Volkmar, D.J. Tomasiewicz, A.M. Moulin, R.B. Irvine, D.A. Derksen, D.L. McLaren, and M.A. Monreal. 2010. The economics of irrigated potato crop rotation in Manitoba. American Journal of Potato Research 87: 446–457.CrossRefGoogle Scholar
  23. Khakbazan, M., R. Henry, J. Haung, R. Mohr, R. Peters, S. Fillmore, V. Rodd, and A. Mills. 2015. Economics of organically managed and conventional potato production systems in Atlantic Canada. Canadian Journal of Plant Science 95: 161–174.CrossRefGoogle Scholar
  24. Khakbazan, M., F.J. Larney, J. Huang, D. Dilay, R.M. Mohr, D.C. Pearson, and R.E. Blackshaw. 2016. Economic comparison of conventional and conservation management practices for irrigated potato production in southern Alberta. American Journal of Potato Research 93: 448–462.CrossRefGoogle Scholar
  25. Khakbazan, M., F.J. Larney, J. Huang, R. M., Mohr, D.C. Pearson, and R.E. Blackshaw. 2017. Economics of conventional and conservation practices for irrigated dry bean rotations in southern Alberta. Agronomy Journal 109: 576–587.Google Scholar
  26. Larkin, R.P., and J.M. Halloran. 2014. Management effects of disease-suppressive rotation crops on potato yield and soilborne disease and their economic implications in potato production. American Journal of Potato Research 91: 429–439.CrossRefGoogle Scholar
  27. Lazarus, S.S., and G.B. White. 1984. Economic impact of introducing rotations on long island potato farms. Northeastern. Journal of Agricultural and Resource Economics 13: 221–228.Google Scholar
  28. Littell, R.C., G.A. Milliken, W.W. Stroup, and R.D. Wolfinger. 1996. SAS system for mixed models, 633. Cary: SAS.Google Scholar
  29. Love, S., and J. Stark. 2003. Potato production systems. Moscow: University of Idaho Agricultural Communications.Google Scholar
  30. Maas, E.M., and J.M. Kotzé. 1990. Crop rotation and take-all of wheat in South Africa. Soil Biology and Biochemistry 22: 489–494.Google Scholar
  31. Manitoba Agriculture, Food, and Rural Initiatives. 2016. Farm machinery custom and rental rate guide. Accessed 30 Jun 2017.
  32. Mohr, R.M., K. Volkmar, D.A. Derksen, R.B. Irvine, M. Khakbazan, D.L. McLaren, M.A. Monreal, A.P. Moulin, and D.J. Tomasiewicz. 2011. Effect of rotation on crop yield and quality in an irrigated potato system. American Journal of Potato Research 88: 346–359.CrossRefGoogle Scholar
  33. Mohr, R., A. Nelson, D. Tomasiewicz, D. McLaren, M. Monreal, B. Irvine, M. Khakbazan, A. Moulin, D. Derksen, and K. Volkmar. 2015. Nutrient status and crop productivity following a 14-year irrigated potato rotation study. Canadian Journal of Plant Science 95: 351–360.CrossRefGoogle Scholar
  34. Myers, P., C.S. McIntosh, P.E. Patterson, R.G. Taylor, and B.G. Hopkins. 2008. Optimal crop rotation of Idaho potatoes. American Journal of Potato Research 85: 183–197.CrossRefGoogle Scholar
  35. Patterson, P.E., and J.C. Stark. 1995. Economic assessment of sustainable potato production practices. Proceedings of the Winter Commodity Schools. University of Idaho.Google Scholar
  36. Peralta, J.M., and C.O. Stockle. 2001. Dynamics of nitrate leaching under irrigated potato rotation in Washington state: A long-term simulation study. Agriculture, Ecosystem and. Environment 88: 23–34.Google Scholar
  37. Richardson, J.W., S.L. Klose, and A.W. Gray. 2000. An applied procedure for estimating and simulating multivariate empirical (MVE) probability distributions in farm-level risk assessment and policy analysis. Journal of Agricultural and Applied Economics 32: 299–315.CrossRefGoogle Scholar
  38. Richardson, J.W., K. Schumann, and P. Feldman. 2004. Simetar©: Simulation for excel to analyze risk. Agricultural and food policy Centre, Dept. of Agric. Econ. Texas A&M University, College Station.Google Scholar
  39. Richardson, J.W., K. Schumann, and P. Feldman. 2008. Simetar©: Simulation and econometrics to analyze risk. College Station: Simetar, Inc.Google Scholar
  40. Rowberry, R.G., and G.W. Anderson. 1983. The profitability of continuous potatoes versus rotations including potatoes and other cash crops. American Journal of Potato Research 60: 503–510.CrossRefGoogle Scholar
  41. SAS Institute Inc., S. I. 2014a. SAS® 9.3 Base SAS. Second Edition ed. SAS Institute Inc., Cary.Google Scholar
  42. SAS Institute Inc., S. I. 2014b. SAS/STAT® 13.2 User’s Guide. SAS Institute Inc., Cary.Google Scholar
  43. Saskatchewan Ministry of Agriculture. 2017. Saskatchewan agriculture farm machinery custom and rental guide 2016–17. Accessed 30 Jun 2017.
  44. Schumann, K.D., P.A. Feldman, and J.W. Richardson. 2011. SIMETAR©: Simulation & econometrics to analyze risk. College Station: Agricultural and Food Policy Center, Texas A&M University.Google Scholar
  45. Statistics Canada. 2016. CANSIM in E-STAT database, Table 001–0014: Area, production and farm value of potatoes. Accessed 12 Jul 2017.
  46. VanderZaag, P. 2010. Toward sustainable potato production: Experience with alternative methods of pest and disease control on a commercial potato farm. American Journal of Potato Research 87: 428–433.CrossRefGoogle Scholar
  47. Westra, J.W., and K.J. Boyle. 1990. An economic analysis of crop grown in rotation with potatoes in Aroostook country, 04469. Maine. Orono: Department of Agricultural and Resource Economics, University of Maine.Google Scholar
  48. Zentner, R.P., D.D. Wall, C.N. Nagy, E.G. Smith, D.L. Young, P.R. Miller, C.A. Miller, B.G. McConkey, S.A. Brandt, G.P. Lafond, A.M. Johnston, and D.H. Derksen. 2002. Economics of crop diversification and soil tillage opportunities in the Canadian prairies. Agronomy Journal 94: 216–230.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2017

Authors and Affiliations

  • Mohammad Khakbazan
    • 1
    Email author
  • Ramona M. Mohr
    • 1
  • Jianzhong Huang
    • 1
  • Erik Campbell
    • 1
  • Karl M. Volkmar
    • 2
  • Dale J. Tomasiewicz
    • 3
  • Alan P. Moulin
    • 1
  • Doug A. Derksen
    • 1
  • Byron R. Irvine
    • 1
  • Debra L. McLaren
    • 1
  • Alison Nelson
    • 4
  1. 1.Agriculture and Agri-Food Canada (AAFC), Brandon Research and Development CenterBrandonCanada
  2. 2.AAFC, Southern Crop Protection and Food Research CentreLondonCanada
  3. 3.Canada-Saskatchewan Irrigation Diversification Centre, AAFCOutlookCanada
  4. 4.Canada-Manitoba Crop Diversification Centre, AAFCCarberryCanada

Personalised recommendations