American Journal of Potato Research

, Volume 95, Issue 2, pp 191–198 | Cite as

Impact of Seed Cutting and Seed-Borne Inoculum on Daughter Tuber Common Scab and Plant Growth

  • Bryan J. Webster
  • Yu Chen
  • Amanda J. Gevens


Common scab (CS), caused primarily by the filamentous, soilborne bacterium Streptomyces scabies, creates significant challenges in the production of quality potato tubers in global growing regions. Over the past several decades, numerous studies been conducted to improve our understanding of the impact of cultural and pesticide treatments for managing the health of progeny daughter tubers. None of the previous studies, however, have addressed differences between the impacts of CS from whole seed vs. cut seed pieces on resulting disease on daughter tubers. A greenhouse trial was conducted during 2013–2014 to assess the impact of seed type and CS severity on plant health and CS on daughter tubers. Cut and suberized ‘Snowden’ seed pieces (~2 oz.) exhibiting 0, 5, and ≥50% CS severity were sown in 3-gal pots containing a 50:50 mix of sterilized sand and field soil. Whole ‘Snowden’ seed tubers (~2 oz.) with the same three levels of CS severity were sown under the same conditions. At harvest, approximately 20% of daughter tubers from asymptomatic seed pieces (both cut and whole) exhibited symptoms of CS. Disease incidence and severity significantly increased for pieces that had 5 and ≥50% CS across both experiments. Plants grown from whole seed had significantly higher yield, on average, when compared to cut seed. Daughter tubers produced from whole seed resulted in higher CS incidence than those from cut seed in one of our two experimental trials. Our results indicated a clear advantage to plant common scab-free seed potatoes with the aim of producing healthier daughter tubers.


Seedborne pathogen Periderm Seed potato Whole seed Cut seed Common scab 


La roña común (CS), causada primeramente por la bacteria filamentosa del suelo Streptomyces scabies, crea retos significativos en la producción de tubérculos de papa de calidad en regiones globales del cultivo. En varias décadas pasadas se han conducido numerosos estudios para mejorar nuestro entendimiento del impacto de tratamientos culturales y de plaguicidas para el manejo de la sanidad de tubérculos de progenie. No obstante, ninguno de los estudios previos ha tratado las diferencias entre los impactos de CS de semilla completa vs semilla cortada sobre la enfermedad resultante de tubérculos hijos. Se condujo un ensayo en invernadero durante 2013–2014 para medir el impacto del tipo de semilla y la severidad de CS en la sanidad de la planta y CS en tubérculos hijos. Fragmentos de semilla cortada y suberizada de “Snowden” (~2 oz.) con 0, 5, y ≥ 50% de severidad de CS se plantaron en recipientes de 3 galones con mezcla de 50:50 de arena estéril y suelo de campo. Tubérculos-semilla completos de “Snowden” (~2 oz.) con los mismos tres niveles de severidad se plantaron bajo las mismas condiciones. A la cosecha, aproximadamente el 20% de los tubérculos hijos de las unidades de semilla asintomáticas (tanto fragmentos como completas) exhibieron síntomas de CS. La incidencia y severidad de la enfermedad aumentó significativamente de unidades que tenían 5 y ≥ 50% de CS en ambos experimentos. Las plantas originadas de semilla completa tuvieron significativamente más alto rendimiento, en promedio, cuando se compararon con semilla cortada. Los tubérculos hijos producidos de semilla completa dieron como resultado incidencia más alta de CS que los de semilla cortada en uno de nuestros dos experimentos. Nuestros resultados indicaron una clara ventaja al plantar semilla de papa libre de roña común con el propósito de producir tubérculos hijos más sanos.



I would like to acknowledge funding support through the Wisconsin Department of Agriculture, Trade, and Consumer Protection Specialty Crop Block Grant program and the USDA-Hatch Project of UW-Madison. Thank you to our Langlade County, Wisconsin seed potato grower cooperator for stimulating this research question and providing tubers for this project.


  1. Adams, M.J., and G.A. Hide. 1981. Effects of common scab (Streptomyces scabies) on potatoes. Annals of Applied Biology 98: 211–216.CrossRefGoogle Scholar
  2. Adams, M.J., and D.H. Lapwood. 1978. Studies on the lenticel development, surface microflora and infection by common scab (Streptomyces scabies) of potato tubers growing in wet and dry soils. Annals of Applied Biology 90: 335–343.CrossRefGoogle Scholar
  3. Allen, E.J., J.L. Anderson, W.G. Burton, et al. 1992. Seed Tuber Production and Management. In The Potato Crop: The scientific basis for improvement, ed. P.M. Harris, 247–291. Berlin: Springer Science & Business Media.CrossRefGoogle Scholar
  4. Atiq, M., A.R. Khalid, W. Hussain, A. Nawaz, S. Asad, and T.M. Ahmad. 2013. Genetic potential of potato germplasm against common scab disease caused by Streptomyces scabies. Pakistan Journal of Phytopathology 25: 27–30.Google Scholar
  5. Braun, S., A. Gevens, A. Charkowski, C. Allen and S. Jansky. 2017. Potato common scab: A review of the causal pathogens, management practices, varietal resistance screening methods, and host resistance. American Journal of Potato Research 94: 283–296.Google Scholar
  6. De Jong, H., J.B. Sieczka and W. De Jong. 2011. The Complete Book of Potatoes: what every grower and gardener needs to know. Portand: Timber Press.Google Scholar
  7. De, B., and P. Sengupta. 1992. Control of common scab disease of potato through boric acid treatment. Indian Agriculturist 36: 117–124.Google Scholar
  8. De, B., and P. Sengupta. 1993. Chemical control of common scab of potato. Journal of the Indian Potato Association 20: 273–274.Google Scholar
  9. Dees, M.W., and L.A. Wanner. 2012. In search of better management of potato common scab. Potato research 55: 249–268.CrossRefGoogle Scholar
  10. Dees, M.W., E. Lysoe, M. Alsheikh, J. Davik, and M.B. Brurberg. 2016. Resistance to Streptomyces turgidiscabies in potato involves an early and sustained transcriptional reprogramming at initial stages of tuber formation. Molecular Plant Pathology 17: 703–713.CrossRefPubMedGoogle Scholar
  11. Douches, D.S., J. Coombs, R. Hammerschmidt, W.W. Kirk, and C. Long. 2009. Kalkaska: A Round White Chip-Processing Potato Variety with Common Scab Resistance. American Journal of Potato Research 86: 347–355.CrossRefGoogle Scholar
  12. Fernie, A.R., and L. Willmitzer. 2001. Molecular and biochemical triggers of potato tuber development. Plant Physiology 127: 1459–1465.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gregory, L.E. 1956. Some factors for tuberization in the potato plant. American Journal of Botany 43: 281–288.CrossRefGoogle Scholar
  14. Hammerschmidt, R., D.T.A. Lamport, and E.P. Muldoon. 1984. Cell wall hydroxyproline enhancement and lignin deposition as an early event in the resistance of cucumber to Cladosporium cucumerinum. Physiological Plant Pathology 24: 43–47.CrossRefGoogle Scholar
  15. Houghland, G., and L.C. Cash. 1956. Some physiological aspects of the potato scab problem. American Potato Journal 33: 86–91.CrossRefGoogle Scholar
  16. Keinath, A.P., and R. Loria. 1991. Effects of inoculum density and cultivar resistance on common scab of potato and population dynamics of Streptomyces scabies. American Potato Journal 68: 515–524.CrossRefGoogle Scholar
  17. Khatri, B.B., R.S. Tegg, P.H. Brown, and C.R. Wilson. 2010. Infection of potato tubers with the common scab pathogen Streptomyces scabiei in a soil-less system. Journal of Phytopathology 158: 453–455.CrossRefGoogle Scholar
  18. Khatri, B.B., R.S. Tegg, P.H. Brown, and C.R. Wilson. 2011. Temporal association of potato tuber development with susceptibility to common scab and Streptomyces scabiei-induced responses in the potato periderm. Plant Pathology 60: 776–786.CrossRefGoogle Scholar
  19. Kumar, P., R. Kumar, A. Kumar, D. Kumar, K. Sandhu, and B. Singh. 2015. Effects of seed cutting and treatment methods of potato on yield, quality and profitability of French fry variety Kufri Frysona. Annals of Agricultural Research. New Series 36: 269–274.Google Scholar
  20. Loria, R., R.A. Bukhalid, B.A. Fry, and R.R. King. 1997. Plant pathogenicity in the genus Streptomyces. Plant Disease 81: 836–846.CrossRefGoogle Scholar
  21. Loria, R., J. Kers, and M. Joshi. 2006. Evolution of plant pathogenicity in Streptomyces. Annual Review of Phytopathology 44: 469–487.CrossRefPubMedGoogle Scholar
  22. Lulai, E.C., and T.P. Freeman. 2001. The importance of phellogen cells and their structural characteristics in susceptibility and resistance to excoriation in immature and mature potato tuber ( Solanum tuberosum L.) periderm. Annals of Botany 88: 555–561.CrossRefGoogle Scholar
  23. Malakar-Kuenen, R., and W.M. Tingey. 2006. Aspects of tuber resistance in hybrid potatoes to potato tuber worm. Entomologia Experimentalis et Applicata 120: 131–137.CrossRefGoogle Scholar
  24. Mishra, P.K., D. Mishra, J.K. Dhal, and P.K. Chhotaray. 1991. Control of common scab of potato by seed tuber treatment. Orissa. Journal of Agricultural Research 4: 120–121.Google Scholar
  25. Morales-Bermudez, M., K. Bock, K.J. Brown, W.G. Burton, et al. 1982. Potato seed production for tropical Africa. Lima: International Potato Center.Google Scholar
  26. Morris, S.C., M.R. Forbes-Smith, and F.M. Scriven. 1989. Determination of optimum conditions for suberization, wound periderm formation, cellular desiccation and pathogen resistance in wounded Solanum tuberosum tubers. Physiological and Molecular Plant Pathology 35: 177–190.CrossRefGoogle Scholar
  27. Nielson, M., W.M. Iritani, and L.D. Weiler. 1989. Potato seed productivity: Factors influencing eye number per seed piece and subsequent performance. American Potato Journal 66: 151–160.CrossRefGoogle Scholar
  28. Nolte, P., M. Bertram, M. Bateman, and C.S. Mclntosh. 2003. Comparative effects of cut and treated seed tubers vs untreated whole seed tubers on seed decay, Rhizoctonia stem canker, growth, and yield of russet Burbank potatoes. American Journal of Potato Research 80: 1–8.CrossRefGoogle Scholar
  29. Pavlista, A.D. 1996. How important is common scab in seed potatoes? American Potato Journal 73: 275–278.CrossRefGoogle Scholar
  30. Platt, H.W. 1989. Potato growth and tuber production as affected by inoculation of cut and whole seed with Rhizoctonia solani (AG 3) and the use of seed treatment fungicides. American Potato Journal 66: 365–378.CrossRefGoogle Scholar
  31. Rouatt, J.W., and R.G. Atkinson. 1950. The effect of the incorporation of certain cover crops on the microbiological balance of potato scab infested soil. Canadian Journal of Research 28c: 140–152.CrossRefGoogle Scholar
  32. Sagova-Mareckova, M., M. Omelka, and J. Kopecky. 2017. Sequential analysis of soil factors related to common scab of potatoes. FEMS Microbiology Ecology 93: fiw201.CrossRefPubMedGoogle Scholar
  33. Sanford, G. 1926. Some factors affecting the pathogenicity of Actinomyces scabies. Phytopathology 16: 525–547.Google Scholar
  34. Santos-Cervantes, M.E., R. Felix-Gastelum, G. Herrera-Rodríguez, M.G. Espinoza-Mancillas, A.G. Mora-Romero, and N.E. Leyva-López. 2017. Characterization, pathogenicity and chemical control of Streptomyces acidiscabies associated to potato common scab. American Journal of Potato Research 94: 14–25.CrossRefGoogle Scholar
  35. Schaal, L.A. 1946. Seed and soil treatment for the control of potato scab. American Potato Journal 23: 163–170.CrossRefGoogle Scholar
  36. Strange, P., and K. Blackmore. 1990. Effect of whole seed tubers, cut seed and within row spacing on potato (cv. Sebago) tuber yield. Australian Journal of Experimental Agriculture 30: 427–431.CrossRefGoogle Scholar
  37. Struik, P.C., and S.G. Wiersema. 1999. Seed potato technology. Wageningen: Wageningen Academic Publisher.CrossRefGoogle Scholar
  38. Tegg, R.S., R. Corkrey, and C.R. Wilson. 2014. A comparison of potato seed-tuber sampling strategies using visual and DNA analyses to estimate incidence of major seed tuber-borne pathogens. European Journal of Plant Pathology 139: 359–367.CrossRefGoogle Scholar
  39. Thangavel, T., R.S. Tegg, and C.R. Wilson. 2016. Toughing it out—Disease-resistant potato mutants have enhanced tuber skin defenses. Phytopathology 106: 474–483.CrossRefPubMedGoogle Scholar
  40. Thomas-Sharma, S., A. Abdurahman, S. Ali, J. Andrade-Piedra, S. Bao, A. Charkowski, D. Crook, M. Kadian, P. Kromann, and P.C. Struik. 2016. Seed degeneration in potato: the need for an integrated seed health strategy to mitigate the problem in developing countries. Plant Pathology 65: 3–16.CrossRefGoogle Scholar
  41. Tyner, D.N., M.J. Hocart, J.H. Lennard, and D.C. Graham. 1997. Periderm and lenticel characterization in relation to potato cultivar, soil moisture and tuber maturity. Potato Research 40: 181–190.CrossRefGoogle Scholar
  42. Wang, A., and G. Lazarovits. 2004. Enumeration of plant pathogenic Streptomyces on postharvest potato tubers under storage conditions. Canadian Journal of Plant Pathology 26: 563–572.CrossRefGoogle Scholar
  43. Wang, A., and G. Lazarovits. 2005. Role of seed tubers in the spread of plant pathogenic Streptomyces and initiating potato common scab disease. American Journal of Potato Research 82: 221–230.CrossRefGoogle Scholar
  44. Wanner, L.A. 2009. A patchwork of Streptomyces species isolated from potato common scab lesions in North America. American Journal of Potato Research 86: 247–264.CrossRefGoogle Scholar
  45. Wanner, L.A., and W.W. Kirk. 2015. Streptomyces – From basic microbiology to role as a plant pathogen. American Journal of Potato Research 92: 236–242.CrossRefGoogle Scholar
  46. Wanner, L.A., W.W. Kirk, and X.S. Qu. 2014. Field efficacy of nonpathogenic Streptomyces species against potato common scab. Journal of Applied Microbiology 116: 123–133.CrossRefPubMedGoogle Scholar
  47. Weinhold, A.R., J.W. Oswald, T. Bowman, J. Bishop, and D. Wright. 1964. Influence of green manures and crop rotation on common scab of potato. American Potato Journal 41: 265–273.CrossRefGoogle Scholar
  48. Wilson, C.R. 2001. Variability within clones of potato cv. Russet Burbank to infection and severity of common scab disease of potato. Journal of Phytopathology 149: 625–628.CrossRefGoogle Scholar
  49. Wilson, C.R., L.M. Ransom, and B.M. Pemberton. 1999. The relative importance of seed-borne inoculum to common scab disease of potato and the efficacy of seed tuber and soil treatments for disease control. Journal of Phytopathology 147: 13–18.Google Scholar
  50. Wilson, C.R., B.M. Pemberton, and L.M. Ransom. 2001. The effect of irrigation strategies during tuber initiation on marketable yield and development of common scab disease of potato in Russet Burbank in Tasmania. Potato Research 44: 243–251.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2017

Authors and Affiliations

  1. 1.Department of Plant PathologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations