American Journal of Potato Research

, Volume 95, Issue 2, pp 139–143 | Cite as

Preliminary Evidence of Nocturnal Transpiration and Stomatal Conductance in Potato and their Interaction with Drought and Yield

  • David A. Ramírez
  • Wendy Yactayo
  • José L. Rolando
  • Roberto Quiroz


In spite of the growing evidence showing the occurrence of nocturnal water exchange measured by stomatal conductance (SCnight, related to stomatal openness) and transpiration (TRnight, related to water losses) in different crops, how those processes are affected by soil water availability is still unknown. A preliminary study was conducted to test the occurrence of TRnight and SCnight (assessed in two moments) in two potato cultivars (UNICA and Sarnav), subjected to a long-term water restriction. The overall TRnight average were 9.0 ± 0.6 and 5.4 ± 2.6% for total daily transpiration under well-watered and water restricted conditions, respectively. Cultivar differences in early night and predawn SCnight and TRnight were more evident under non-restricted water conditions. Tuber yield was linearly correlated with TRnight and predawn and early-night SCnight. These preliminary findings emphasize the need for future research to corroborate the detection of TRnight and SCnight under water restrictions in potato, addressing the functional implications of these traits and the usefulness of SCnight for screening large sets of genotypes for potato breeding.


Nocturnal transpiration Night-time conductance Solanum tuberosum Water restriction 


Si bien existe creciente evidencia sobre la ocurrencia de intercambio de agua nocturna medida por la conductancia estomatal (SCnoche, relacionada con la abertura del estoma) y transpiración (TRnoche, relacionada a la pérdida de agua) en diferentes cultivos, aun se desconoce como estos procesos son afectados por la disponibilidad de agua en el suelo. Un estudio preliminar para probar la ocurrencia de TRnoche y SCnoche (evaluado en dos momentos) fue llevado a cabo en dos variedades de papa (UNICA y Sarnav), sujetas a restricción hídrica prolongada. El promedio de TRnoche correspondió entre  9.0 ± 0.6 y de 5.4 ± 2.6% del valor de la transpiración diaria total bajo condiciones de buen suministro de agua y de restricción hídrica, respectivamente. Las diferencias entre variedades en SCnoche y Tnoche medidas temprano en la noche y previo al amanecer fueron más evidentes bajo condiciones sin restricción de agua. El rendimiento de tubérculo estuvo correlacionado linealmente con TRnoche y SCnoche medida  temprano en la noche y  pre-amanecer. Estos hallazgos preliminares enfatizan la necesidad de investigación futura para corroborar la detección de TRnoche y SCnoche bajo restricciones de agua en papa, analizándose las implicaciones funcionales de estos caracteres y la utilidad de SCnoche para la evaluación de grandes grupos de genotipos para el mejoramiento de papa.



This research was conducted under the CGIAR Research Programs (CRP) on Root, Tuber and Bananas (RTB) and Water Land and Ecosystems, and the bilateral projects: - BMZ/GIZ “Improved potato genotypes and water management technologies to enhance water use efficiency, resilience, cost-effectiveness, and productivity of smallholder farms in stress-prone Central Asian environments”, - PNIA-N°: 016-2015-INIA-PNIA/UPMSI/IE “Uso efectivo del agua en el cultivo de papa en zonas áridas: Mejorando el manejo del riego mediante el monitoreo del estatus hídrico para enfrentar al Cambio Climático”. Authors thank Libby Rens, Nikolai Alarcón and Jesús Zamalloa for their assistance in the trial management and physiological measurements. Authors are also indebted to MSc. Felipe de Mendiburu for his advice and support in the statistical analysis and Dr. Victor Mares who helped editing and correcting of the final version of this communication.


  1. Ahmadi, S.H., M.N. Andersen, F. Plauborg, R.T. Poulsen, C.R. Jensen, A.R. Sepaskhah, and S. Hansen. 2010. Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity. Agricultural Water Management 97: 1923–1930.CrossRefGoogle Scholar
  2. Blom-Zandstra, M., C.S. Pot, F.M. Maas, and A.H.C.M. Schapendonk. 1995. Effects of different light treatments on the nocturnal transpiration and dynamics of stomatal closure of two rose cultivars. Scientia Horticulturae 61: 251–262.CrossRefGoogle Scholar
  3. Caird, M.A., J.H. Richards, and T.C. Hsiao. 2007a. Significant transpiration water loss occurs throughout the night in field-grown tomato. Functional Plant Biology 34: 172–177.CrossRefGoogle Scholar
  4. Caird, M.A., J.H. Richards, and L.A. Donovan. 2007b. Nighttime stomatal conductance and transpiration in C3 and C4 plants. Plant Physiology 143: 4–10.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Condori, B., R.J. Hijmans, R. Quiroz, and J.F. Ledent. 2010. Quantifying the expression of potato genetic diversity in the high Andes through growth analysis and modeling. Field Crops Research 119: 135–144.CrossRefGoogle Scholar
  6. Dodd, A.N., N. Salathia, A. Hall, E. Kevei, R. Toth, F. Nagy, J.M. Hibberd, A.J. Millar, and A.A.R. Webb. 2005. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309: 630–633.CrossRefPubMedGoogle Scholar
  7. FAO. 2016. World crop production statistics. Accessed 10 Sept 2016.
  8. Marks, C.O., and M.J. Lechowicz. 2007. The ecological and functional correlates of nocturnal transpiration. Tree Physiology 27: 577–584.CrossRefPubMedGoogle Scholar
  9. Matimati, I., G.A. Verboom, and M.D. Cramer. 2014. Do hydraulic redistribution and nocturnal transpiration facilitate nutrient acquisition in Aspalathus Linearis? Oecologia 175: 1129–1142.CrossRefPubMedGoogle Scholar
  10. McClung, C.R. 2006. Plant circadian rhythms. Plant Cell 18: 792–803.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Monneveux, P., D.A. Ramírez, and M.T. Pino. 2013. Drought tolerance in potato (S. tuberosum L.): Can we learn from drought tolerance research in cereals? Plant Science 205–206: 76–86.CrossRefPubMedGoogle Scholar
  12. Monteith, J.L., and M. Unsworth. 2001. Principles of environmental physics. 2nd ed. Oxford: Butterworth-Heinemann.Google Scholar
  13. Ramírez, D.A., W. Yactayo, L.R. Rens, J.L. Rolando, S. Palacios, F. De Mendiburu, V. Mares, C. Barreda, H. Loayza, P. Monneveux, L. Zotarelli, A. Khan, and R. Quiroz. 2016. Defining biological thresholds associated to plant water status for monitoring water restriction effects: Stomatal conductance and photosynthesis recovery as key indicators in potato. Agricultural Water Management 177: 369–378.CrossRefGoogle Scholar
  14. Raymundo, R., S. Asseng, D. Cammarano, and R. Quiroz. 2014. Potato, sweet potato, and yam models for climate change: A review. Field Crops Research 166: 173–185.CrossRefGoogle Scholar
  15. Resco de Dios, V., J. Roy, J.P. Ferrio, J.G. Alday, D. Landais, A. Milcu, and A. Gessler. 2015. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration. Scientific Reports 5: 10975.CrossRefGoogle Scholar
  16. Resco de Dios, V., M.E. Loik, R. Smith, M.J. Aspinwall, and D.T. Tissue. 2016. Genetic variation in circadian regulation of nocturnal stomatal conductance enhances carbon assimilation and growth. Plant Cell. Environment 39: 3–11.Google Scholar
  17. Rolando, J.L., D.A. Ramírez, W. Yactayo, P. Monneveux, and R. Quiroz. 2015. Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.). Environmental and Experimental Botany 110: 27–35.CrossRefGoogle Scholar
  18. Schoppach, R., E. Claverie, and W. Sadok. 2014. Genotype-dependent influence of night-time vapour pressure deficit on night-time transpiration and daytime gas exchange in wheat. Functional Plant Biology 41: 963–971.CrossRefGoogle Scholar
  19. Tourneux, C., A. Devaux, M.R. Camacho, P. Mamani, and J.F. Ledent. 2003. Effect of water shortage on six potato genotypes in the highlands of Bolivia (II): Water relations, physiological parameters. Agronomie 23: 181–190.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Authors and Affiliations

  1. 1.International Potato Center (CIP)Lima 12Peru
  2. 2.Water Resources Doctoral ProgramUniversidad Nacional Agraria La MolinaLimaPeru
  3. 3.Gansu Key Laboratories of Arid and Crop Science, Crop Genetic and Germplasm Enhancement, Agronomy CollegeGansu Agricultural UniversityLanzhouChina
  4. 4.North Florida Research and Education CenterUniversity of FloridaMariannaUSA

Personalised recommendations