American Journal of Potato Research

, Volume 95, Issue 2, pp 130–138 | Cite as

Losses during Storage of Potato Varieties in Relation to Weather Conditions during the Vegetation Period and Temperatures during Long-Term Storage

Article
  • 73 Downloads

Abstract

Degradation of harvested tubers due to water loss, sprouting, and disease can cause severe economic difficulties in the cultivation of potatoes (Solanum tuberosum). This study evaluated the storage losses of new varieties of potato and determined the sprouting dates of potatoes stored at different temperatures. Additionally, this study evaluated the influence of weather conditions during the vegetative growth period on the date of sprouting in storage. After storage at three different temperatures (3, 5, and 8 °C), we estimated natural losses and losses caused by sprouting or the development of disease. The potato varieties stored at 3 °C, and 5 °C had similar weight losses (8.8% and 9.3%, respectively), but the potatoes stored at 8 °C had higher losses (10.8%). The average potato losses caused by disease ranged from 0.6% to 10%. The onset of sprouting of potatoes stored at 8 °C depended on the variety and began in the 20 day of December. Storage at 5 °C delayed sprouting by about 50 days compared with storage at 8 °C. Weather conditions (hot and rainy) during vegetative growth of the plants also influenced sprouting date, natural losses, and the amount of disease during storage. Our data showed a significant correlation between the hydrothermal coefficient during the vegetative period and the date of sprouting of potatoes during storage.

Keywords

Temperature Weight losses Potato Storage Weather condition Sprouting 

Resumen

La degradación de tubérculos cosechados debida a la pérdida de agua, brotación y enfermedad, puede causar dificultades económicas severas en el cultivo de papa (Solanum tuberosum). Este estudio evaluó las pérdidas de almacén de nuevas variedades de papa y determinó las fechas de brotación de papas almacenadas a diferentes temperaturas. Además, se evaluó la influencia de las condiciones meteorológicas durante el período del crecimiento vegetativo respecto a la fecha de brote en el almacén. Después del almacenamiento a tres diferentes temperaturas (3, 5 y 8 °C), estimamos las pérdidas naturales y las pérdidas causadas por brotación en el desarrollo de la enfermedad. Las variedades de papa almacenadas a 3 °C y 5 °C tuvieron pérdidas de peso similares (8.8% y 9.3%, respectivamente), pero las papas almacenadas a 8 °C tuvieron pérdidas más altas (10.8%). El porcentaje de pérdida de papa causada por enfermedades fluctuó de 0.6% a 10%. El establecimiento de la brotación en papas almacenadas a 8 °C dependió de la variedad y empezó el 20 de diciembre. El almacenamiento a 5 °C retrasó la brotación en cerca de 50 días en comparación con el almacenamiento a 8 °C. Las condiciones meteorológicas (calor y lluvia) durante el crecimiento vegetativo de las plantas también influenció la fecha de brotación, las pérdidas naturales y la cantidad de enfermedad durante el almacenamiento. Nuestros datos mostraron una correlación significativa entre el coeficiente hidrotémico durante el período vegetativo y la fecha de brotación de las papas durante el almacenamiento.

References

  1. Aksenova, N.P., L.I. Sergeeva, T.N. Konstantinova, S.A. Golyanovskaya, O.O. Kolachevskaya, and G.A. Romanov. 2013. Regulation of potato tuber dormancy and sprouting. Russian Journal of Plant Physiology 60 (3): 301–312.CrossRefGoogle Scholar
  2. Asmamaw, Y., and T. Tekalign. 2010. Specific gravity, dry matter concentration, ph, and crisp-making potential of Ethiopian potato (Solanum Tuberosum L.) cultivars as influenced by growing environment and length of storage under ambient conditions. Potato Research 53: 95–109.CrossRefGoogle Scholar
  3. Badeck, F.-W., A. Bondeau, K. Böttcher, D. Doktor, W. Lucht, J. Schaber, and S. Sitch. 2004. Responses of spring phenology to climate change. The New Phytologist 162: 295–309.CrossRefGoogle Scholar
  4. Burton W.G., Es van A., Hartmans K.J. 1992. The physics and physiology of storage. in: the potato crop, the scientific basis for improvement, second edition, ed. by Paul Harris (chapman and hall), London: 608–727.Google Scholar
  5. Celis-Gamboa, C., E.C. Struik, E. Jacobsen, and R.G.E. Vissew. 2004. Sprouting of seed tubers during cold storage and its influence on tuber formation, flowering and the duration of the life cycle in a diploid population of potato. Potato Research 46: 9–25.CrossRefGoogle Scholar
  6. Copp, L.J., R.W. Blenkinsop, R.Y. Yada, and A.G. Marangoni. 2000. The relationship between respiration and chip colour during long term storage of potato tubers. American Journal of Potato Research 77: 279–287.Google Scholar
  7. Czerko, Z. 2008. Stability of selected varieties of potato storage. Polish potato. 3: 24–28.Google Scholar
  8. Czerko, Z., and M. Grudzińska. 2014. Influence of weather and storage conditions on sprouting of potato tubers. Bulletin of Plant Breeding and Acclimatization Instituite 271: 119–127.Google Scholar
  9. Daniels-Lake, B.J., and R.K. Prange. 2007. The canon of potato science 41. Sprouting. Potato Research 50: 379–382.CrossRefGoogle Scholar
  10. de Haan, Eisse G., C.E.M. Toos, Gé W. van den Bovenkamp Dekker-Nooren, G.C.L. Arjen, Patricia S. van der Zouwen Speksnijder, and Jan M. van der Wolf. 2008. Pectobacterium carotovorum subsp. Carotovorum can cause potato blackleg in temperate climates. European Journal of Plant Pathology 122: 561–569.CrossRefGoogle Scholar
  11. Ezekiel, R., B. Singh, M.L. Sharma, I.D. Garg, and S.M. Paul Khurana. 2004. Relationship between weight loss and periderm thickness in potatoes stored at different temperatures. Potato J. 31: 135–140.Google Scholar
  12. Grudzińska, M. 2012. Influence of weather and storage conditions of technological change of potato French fries and chips production. Bulletin of Plant Breeding and Acclimatization Instituite 265: 137–148.Google Scholar
  13. Hèlias, V., D. Andrivon, and B. Jouan. 2000. Development of symptoms caused by Erwinia carotovora spp. atroseptica under field conditions and their effects on the yield of individual potato plants. Plant Pathology 49: 23–32.Google Scholar
  14. Hide, G.A., K.J. Boorer, and S.M. Hall. 1994. Effects of watering potato plants before harvest and of curing conditions on development of tuber diseases during storage. Potato Research 37: 169–172.CrossRefGoogle Scholar
  15. Iritani, W.M., C.A. Pettibone, and L. Weller. 1977. Relationship of relative maturity and storage temperatures to weight loss of potatoes in storage. American Potato Journal 54: 305–314.CrossRefGoogle Scholar
  16. Kapsa, J. 2008. Important threats in potato production and integrated patogen/pest management. Potato Research 51: 129–137.CrossRefGoogle Scholar
  17. Kapsa, J. 2012. Potato protection against fungal diseases and bacterial infections. In Production and market of potato, second edition, ed. By Jacek Chotkowski. The village of tomorrow. Warsaw, 140–155.Google Scholar
  18. Kloosterman, B., O. Vorst, R.D. Hall, R.G.F. Visser, and C.W. Bachem. 2005. Tuber on a chip: Differential gene expression during potato tuber development. Plant Biotechnology Journal 3: 505–519.CrossRefPubMedGoogle Scholar
  19. Kushalappa, A.C., and M. Zulfiqar. 2001. Effect of wet incubation time and temperature on infection, and of storage time and temperature on soft rot lesion expansion in potatoes inoculated with Erwinia carotovora ssp. Carotovora. Potato Research 44: 233–242.CrossRefGoogle Scholar
  20. Levy, D., and R.E. Veilleux. 2007. Adaption of potato to high temperatures and salinity—A review. American Journal of Potato Research 84: 487–506.CrossRefGoogle Scholar
  21. Love, S.L., and J.J. Pavek. 1989. Family and skin-type effects on storage losses in a potato (Solanum tuberosum L.) breeding population. Am. Potato J. 66: 247–251.CrossRefGoogle Scholar
  22. Mackay, G.R., J. Brown, and C.J.W. Torrance. 1990. The processing potential of tubers of the cultivated potato, Solanum Tuberosum L., after storage at low temperature. 1. Fry colour. Potato Research 33: 211–218.CrossRefGoogle Scholar
  23. Molga, M. 1986. Basics of Agricultural Climatology, 7th ed, 544–547. Warszawa: National Publishing of Agricultural and Forestry.Google Scholar
  24. Olsen N., 1, Thornton R.E., Baritelle A., Hyde G. 2003. The influence of storage conditions on physical and physiological characteristics of Shepody potatoes. Potato Res. 46: pp. 95–103.RA.Google Scholar
  25. Pérombelon, M.C.M. 2002. Potato diseases caused by soft rot erwinias: An overview of pathogenesis. Plant Pathology 51: 1–12.CrossRefGoogle Scholar
  26. Pringle, R.T., K. Robinson, S. Wale, and G. Burnett. 1991. Comparison of the effect of storage environment on tuber contamination with Ervinia carotovora. Potato Research 34: 17–28.CrossRefGoogle Scholar
  27. Rastovski, A., N. Buitelaar, A. Van Es, P.H. De Haan, K.J. Hartmans, C.P. Meijers, J.H.W. Van der Schild, P.H. Sijbring, H. Sparenberg, B.H. Van Zwol, and D.E. Van der Zaag. 1981. Storage of potatoes. Centre for Agricultural Publishing and Documentation. In Wageningen: 262 ss.Google Scholar
  28. Reust, W. 1986. Physiological age of potato. Definitions of terms (European Association for Potato Reaserch Working Group). Potato Research 29: 268–271.CrossRefGoogle Scholar
  29. Reust, W., F.A. Winiger, T. Hebeisen, and J.P. Dutoit. 2001. Assessment of the physiological vigour of new potato cultivars in Switzerland. Potato Research 44: 11–17.CrossRefGoogle Scholar
  30. Rykaczewska, K. 2004a. Effect of high temperature during vegetation on potato (Solanum Tuberosum L.) yield, period of tuber dormancy andaseed tuber yielding ability. Part I: Plant development and yield. Advances of Agricultural Sciences Problem. 496: 185–198.Google Scholar
  31. Rykaczewska, K. 2004b. Effect of high temperature during vegetation on potato (Solanum Tuberosum L.) yield, period of tuber dormancy and seed tuber yielding ability. Part II: Tuber dormancy duration. Advances of Agricultural Sciences Problem. 496: 199–206.Google Scholar
  32. Senning, M., U. Sonnewald, and S. Sonnewald. 2010. Deoxyuridine triphosphatase expression defines the transition from dormant to sprouting potato tuber buds. Molecular Breeding 26: 525–531.CrossRefGoogle Scholar
  33. Sharma, A.K., E.P. Venkatasalam, and V. Kumar. 2012. Storability and sprouting behaviour of micro-tubers of some Indian potato cultivars. Potato. Journal 39: 31–38.Google Scholar
  34. Sonnewald, S., and U. Sonnewald. 2014. Regulation of potato tuber sprouting. Planta 239: 27–38.CrossRefPubMedGoogle Scholar
  35. Sowa-Niedziałkowska, G. 1988. Share of transpiration in natural losses Turing the storage of potatoes. Potato 1988: 61–77.Google Scholar
  36. Sowa-Niedziałkowska, G. 2004. The indicators of physiological processes in seed potato tubers during long-term storage part I. Dormancy period and intensity of sprouting. Bulletin of Plant Breeding and Acclimatization Instituite 233: 219–236.Google Scholar
  37. Sowa-Niedziałkowska, G., and K. Zgórska. 2005. The influence of storage temperature and cultivar on weight losses during storage of potato tubers. Pamiętnik Puławski 139: 233–243.Google Scholar
  38. Susnoschi, M. 1981. Seed potato quality as influenced by high temperatures during the growth period. 1. Effect of storage temperature on sprout growth. Potato Research 24: 371–379.CrossRefGoogle Scholar
  39. Zarzyńska, K. 2004. The length of tuber dormancy period in new potato cultivars. Bulletin of Plant Breeding and Acclimatization Instituite 232: 5–14.Google Scholar

Copyright information

© The Potato Association of America 2018

Authors and Affiliations

  1. 1.Department of Potato Storage and Processing, Research Division Jadwisin, Plant Breeding and Acclimatization Institute, National Research InstituteSerockPoland
  2. 2.Laboratory of Seed Production and Plant Breeding EconomicsPlant Breeding and Acclimatization Institute, National Research Institute in RadzikówRadzikówPoland

Personalised recommendations