Disturbance and Response in the Andean Cloud Forest: a Conceptual Review

Abstract

The Andean cloud forest is a critical part of the Neotropics and much of its structure, function and dynamics are in response to both natural and human-caused disturbances. Those natural disturbances include landslides, and tree death leading to trees falling and creating gaps in the canopy. The human-caused disturbances include logging, mining, road construction and other aspects of urbanization as well as slash-and-burn forest clearing techniques before cultivation (e.g., in sugarcane [Saccharum officinarum], in banana [Musa sp.] and/or in coffee [Coffea arabica]). When yields decline in those cultivated areas cattle often graze in them creating pastures, with or without the planting of exotic grasses such as Setaria sphacelata. Here I first explore definitions of disturbance and then review all published research on disturbances in the Andean cloud forest and the responses of the abiotic and biotic components of those ecosystems, which include plant replacements. Next, I expand on conceptual models of plant community dynamics by refashioning the traditional disturbance = > response paradigm into nine classes of plant-plant replacements. Finally, I present 6 years of baseline data showing the plant-plant replacements in a one-hectare plot in undisturbed Andean cloud forest in Ecuador. I suggest that those replacements be used to facilitate future research through comparison with the plant-plant replacements in disturbed Andean cloud forests recovering after both natural and human-caused disturbances.

Resumen

El bosque nuboso andino es una parte crítica del neotrópico y gran parte de su estructura, función y dinámica responde a una variedad de perturbaciones tanto naturales como humanas. Esos disturbios naturales incluyen deslizamientos de tierra y muerte de los árboles, lo que lleva a la caída de los árboles y crea brechas en el dosel. Las perturbaciones causadas por el hombre incluyen la tala, la minería, la construcción de carreteras y otros aspectos de la urbanización, así como las técnicas de tala y quema de bosques antes de su cultivo (por ejemplo, en la caña de azúcar [Saccharum officinarum], en la banana [Musa sp.] Y / o en café [Coffea arabica]). Cuando los rendimientos disminuyen en esas áreas cultivadas, el ganado a menudo pasta en ellos creando pastos, con o sin la plantación de pastos exóticos como Setaria sphacelata. Aquí primero exploro las definiciones de perturbación y luego reviso toda la investigación publicada sobre perturbaciones en el bosque nuboso andino y las respuestas de los componentes abióticos y bióticos de esos ecosistemas, que incluyen el reemplazo de plantas. A continuación, amplío los modelos conceptuales de la dinámica de la comunidad vegetal mediante la remodelación del paradigma tradicional de perturbación = > respuesta en nueve clases de reemplazos planta-planta. Finalmente, presento seis años de datos de referencia que muestran los reemplazos planta-planta en una parcela de una hectárea en un bosque nuboso andino no perturbado en Ecuador. Sugiero que esos reemplazos se usen para facilitar la investigación futura a través de la comparación con los reemplazos planta-planta en bosques nublados andinos perturbados que se recuperan después de disturbios naturales y causados por el hombre.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Anthelme, F., Lincango, J., Gully, C., Duarte, N. & R. Montufar. 2011. How anthropogenic disturbances affect the resilience of a keystone palm tree in the threatened Andean cloud forest? Bio. Cons. 144:1059–1067.

  2. Arens, N.C. 2001. Variation in performance of the tree fern Cyathea caracasana (Cyatheaceae) across a successional mosaic in an Andean Cloud Forest. Am. J. Bot.88:545–551.

  3. Ataroff, M. & F. Rada. 2000. Deforestation impact on water dynamics in a Venezuelan Andean Cloud Forest. Ambio 29:440–444.

    Google Scholar 

  4. Aubad, J., Aragon, P., Olalla-Tarrage, M.A. & M. A. Rodriguez. 2008. Illegal logging, landscape structure and the variation of tree species richness across North Andean forest remnants. For. Ecol. Manag. 255:1892–1899.

  5. Basham, E.W., Gonzalez del Pliego, P., Acosta-Galvis, A.R., Woodcock, P., Uribe, A.M., Haugaasen, T., Gilroy, J.J. & D. P. Edwards. 2016. Quantifying carbon and amphibian co -benefits from secondary forest regeneration in the Tropical Andes. Animal Cons. 19:548–560.

    Google Scholar 

  6. Bazzaz, F.A. 1983. Characteristics of populations in relation to disturbance in natural and man -modified ecosystems. Pp 259-275 in: Disturbance and Ecosystems (eds Mooney HA, Godron M) Springer-Verlag, Berlin.

  7. Beck, E., Bendix, J., Kottke, I., Makeschin, F. & R. Mosandl. 2008. Gradients in a Tropical Mountain Ecosystem of Ecuador. Springer-Verlag, Berlin.

    Google Scholar 

  8. Becker, C.D., Loughin, T.M. & T. Santander. 2008. Identifying forest-obligate birds in tropical moist cloud forest of Andean Ecuador. J. Field Ornith. 79:229–244.

  9. Beltran, N.G., Gartner, S., Gaviria, J.C., Meier, W. & A. Reif. 2012. Successional vegetation patterns in abandoned pastures of the lower montane cloud forest zone in the Venezuelan Andes. Phytocoenologia 42:101–132.

    Google Scholar 

  10. Blodgett, T.A. & B. L. Isacks. 2007. Landslide erosion rate in the eastern cordillera of northern Bolivia. Earth interactions 11:1–10.

    Google Scholar 

  11. Brenning, A., Schwinn, M., Ruiz-Paez, A.P. & J. Muenchow. 2015. Landslide susceptibility near highways is increased by one order of magnitude in the Andes of southern Ecuador, Loja province. Nat. Haz. Earth System Sci. 15:45–57.

  12. Brokaw, N.V.L. 1985. Treefalls, regrowth, and community structure in tropical forests. Pp 53–69 in The ecology of natural disturbance and patch dynamics. Pickett STA, White PS eds. Academic Press, Inc. New York.

  13. Bruijnzeel, L.A., Scatena, F.N. & L. S. Hamilton. 2010. Tropical Montane Cloud Forests: Science for Conservation and Management. Cambridge University Press.

  14. Bussmann, R.W. 2001. The montane forests of Reserva Biologica San Francisco (Zamora -Chinchipe, Ecuador): Vegetation zonation and natural regeneration. Die Erde 132:9–25.

    Google Scholar 

  15. Bussmann, R.W., Wilcke, W. & M. Richter. 2008. Landslides as important disturbance regimes – causes and regeneration. Pp 319-330 In Gradients in a Tropical mountain Ecosystem of Ecuador. Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R eds. Springer-Verlag, Berlin.

  16. Bustos, J.H. & P. Ulloa-Chacon. 1996. Mirmecofauna y perturbacion en un bosque de niebla neotropical (Reserva Natural Hato Viejo, Valle del Cauca, Colombia). Rev. Biol. Trop. 44:259–266.

    Google Scholar 

  17. Canham, C.D., LePage P.T., & K. D. Coates. 2004. A neighborhood analysis of canopy tree competition: effects of shading versus crowding. Can. J. For. Res. 34(4): 778-787.

  18. Catherine, L., Cardelús, C.L., Colwell, R.K. & J. E. Watkins. 2006. Vascular Epiphyte distribution patterns: explaining the mid-elevation richness peak. J. Ecol. 94:144–156.

    Google Scholar 

  19. Clements, F.E. 1916. Plant succession; an analysis of the development of vegetation. Washington, Carnegie Institution of Washington.

    Google Scholar 

  20. Cole, E.M., Bustamante, M.R., Almeida-Reinoso, D. & W. C. Funk. 2014. Spatial and temporal variation in population dynamics of Andean frogs: effects of forest disturbance and evidence for declines. Global Ecol. Conserve.1:60–70.

  21. Escobar, F., Halffter, G. & L. Arellano. 2007. From forest to pasture: an evaluation of the influence of environment and biogeography on the structure of beetle (Scarabaeinae) assemblages along three altitudinal gradients in the Neotropical region. Ecography 30:193–208.

    Google Scholar 

  22. Grime, J.P. 1979. Plant strategies and vegetation processes. Wiley, NY.

    Google Scholar 

  23. Cubides, P.J.I. & J. N. U. Cardona. 2011. Anthropogenic disturbance and edge effects on Anuran assemblages inhabiting Cloud forest fragments in Colombia. Natureza & Conservacao 9:1–8.

    Google Scholar 

  24. Gomez-Peralta, D., Oberbauer, S.F., McClain, M.E. & Philippi, T.E. 2008. Rainfall and cloud-water interception in tropical montane forests in the eastern Andes of Central Peru. Forest Ecol. Manag. 255:1315–1325.

  25. Hilt, N. & K. Fiedler. 2005. Diversity and composition of Arctiidae moth ensembles along a successional gradient in the Ecuadorian Andes. Diversity and Distribution 11:387–398.

    Google Scholar 

  26. Homeier, J. & S. W. Breckle. 2008. Gap dynamics in a tropical lower montane forest in south Ecuador. Pp 311-317 In: Gradients in a Tropical Mountain Ecosystem of Ecuador. Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R. eds. Springer-Verlag, Berlin.

  27. Homeier, J., Hertel, D., Camenzind, T., Cumbicus, N.L., Maraun, M., Martinson, G.O., Poma, L.N., Rillig, M.C., Sandmann, D., Scheu, S., Veldkamp, E., Wilcke, W., Wullaert, H. & C. Leuschner. 2012. Tropical Andean Forests are highly susceptible to nutrient inputs – rapid effects of experimental N and P addition to an Ecuadorian montane forest. Public Library of Science 7:1–10.

    Google Scholar 

  28. Laegaard, S. 1992. Influence of fire in the grass paramo vegetation of Ecuador. Pp 151-170 in: Paramo. An Andean Ecosystem under Human Influence. Balslev H, Luteyn J eds. Academic press, NY.

  29. Lavoral, S., McIntyre, S., Landsberg, J. & T. D. Forbes. 1997. Plant functional classifications from general groups to specific groups based on response to disturbance. TREE 12:474–478.

    Google Scholar 

  30. Lindner, A. & W. Morawetz. 2006. Seed dispersal by frugivorous bats on landslides in a montane rain forest in Souther Ecuador. Chiroptera Neotropical 12:232–237.

    Google Scholar 

  31. Markham, A. 1998. Potential impacts of climate change on tropical forest ecosystems. Climate change 39:141–143.

    Google Scholar 

  32. Muriel, S.B. & G. H. Kattan. 2009. Effects of patch size and type of coffee matrix on Ithomiine butterfly diversity and dispersal in Cloud-forest fragments. Conservation Biology 23:948–56.

    PubMed  Google Scholar 

  33. Myster, R.W. 2001. What is ecosystem structure? Caribbean J. Sci. 37:132–134.

    Google Scholar 

  34. Myster, R.W. 2003. Using biomass to model disturbance. Community Ecology 4:101–105.

    Google Scholar 

  35. Myster, R.W. 2004a. Regeneration filters in post-agricultural fields of Puerto Rico and Ecuador. Plant Ecol. 172:199–209.

    Google Scholar 

  36. Myster, R.W. 2004b. Post-agricultural invasion, establishment, and growth of Neotropical trees. Bot. Rev. 70:381–402.

    Google Scholar 

  37. Myster, R.W. 2007a. Early successional pattern and process after Sugarcane, Banana and pasture cultivation in Ecuador. NZ J. Bot. 46:101–110.

    Google Scholar 

  38. Myster, R.W. 2007b. Post-agricultural succession in the Neotropics. Springer-Verlag, Berlin

    Google Scholar 

  39. Myster, R.W. 2009. Are productivity and richness consistently related after different crops in the Neotropics? Botany 87:357–362

    Google Scholar 

  40. Myster, R.W. 2010a. Testing dominance-diversity hypotheses using data from abandoned plantations and pastures in Puerto Rico and Ecuador. J. Trop. Ecol. 26:247–250.

    Google Scholar 

  41. Myster, R.W. 2010b. A comparison of tree replacement models in oldfields at Hutchenson Memorial Forest. J. Torrey Bot. Soc. 137:113–119.

    Google Scholar 

  42. Myster, R.W. 2012a. A refined methodology for defining plant communities using data after Sugarcane, Banana and pasture cultivation in the Neotropics. The Scientific World Journal, vol. 2012, Article ID 365409, 9 pages, doi:https://doi.org/10.1100/2012/365409.

  43. Myster, R.W. 2012b. Plants replacing plants: the future of community modeling and research. Bot. Rev. 78:2–9.

    Google Scholar 

  44. Myster, R.W. 2012c. Ecotones between forest and grassland. Springer-Verlag, Berlin.

    Google Scholar 

  45. Myster, R.W. 2013. Long-term data from fields recovering after Sugarcane, Banana and Pasture cultivation in Ecuador. Dataset papers in Ecology, vol. 2013, Article ID 468973,10 pages, doi:https://doi.org/10.7167/2013/46873.

  46. Myster, R.W. 2014. Primary vs. secondary forests in the Neotropics: two case studies after agriculture. Pp 1-42 in Forest Ecosystems: biodiversity, management and conservation. Roberts NC (ed) Nova publishers, NY.

  47. Myster, R.W. 2015. Seed predation, pathogens and germination in primary vs. secondary cloud forest at Maquipucuna Reserve, Ecuador. J. Trop. Ecol. 31:375–378.

    Google Scholar 

  48. Myster, R.W. 2016. Forest structure, function and dynamics in Western Amazonia. Wiley-Blackwell, Oxford, UK.

    Google Scholar 

  49. Myster, R.W. 2017. Gradient (elevation) vs. disturbance (agriculture) effects on primary cloud forest in Ecuador: floristics and physical structure. NZ J. For. Sci. 47:1–7.

    Google Scholar 

  50. Myster, R.W. 2018a. Gradient (elevation) vs. disturbance (agriculture) effects on primary cloud forest in Ecuador: seed predation, seed pathogens and germination. NZ J. For. Sci. 48:4–11.

    Google Scholar 

  51. Myster, R.W. 2018b. The nine classes of plant-plant replacement. Ideas in Ecol. Evol. 11:29–34.

  52. Myster, R.W. in press. The Andean cloud forest. Springer-Verlag, Berlin.

  53. Myster, R.W., Thomlinson, J.R. & M. C. Larsen. 1997. Predicting landslide vegetation in patches on landscape gradients. Landscape ecology 12:299–307.

    Google Scholar 

  54. Myster, R.W. & F. O. Sarmiento. 1998. Seed inputs to microsite patch recovery on Tropandean landslides in Ecuador. Restoration Ecology 6:35–43.

    Google Scholar 

  55. Myster, R.W. & S. T. A. Pickett. 1994. A comparison of rate of succession over 18 yr in 10 contrasting old fields. Ecology 75:387–392.

    Google Scholar 

  56. Nadkarni, N.M. & N. T. Wheelwright. 2000. Monteverde: Ecology and Conservation of a Tropical Cloud Forest. Oxford University Press, Oxford, UK.

    Google Scholar 

  57. Ohl, C. & R. Bussmann. 2004. Recolonisation of natural landslide in tropical mountain forests of Southern Ecuador. Feddes Repertorium 115:3–4.

    Google Scholar 

  58. Paul, S., Flessa, H., Veldkamp, E. & M. Lopez-Ulloa. 2008. Stabilization of recent soil carbon in the humid tropics following land use changes: evidence from aggregate fractionation and stable isotope analyses. Biogeochemistry 87:247–263.

    CAS  Google Scholar 

  59. Pickett, S.T.A., Kolasa, J., Armesto, J.J. & S. Collins. 1989. The ecological concept of disturbance and its expression at various hierarchical levels. Oikos 54:129–136.

    Google Scholar 

  60. Politi, N., Hunter, M. & L. Rivera. 2012. Assessing the effects of selective logging on birds in Neotropical piedmont and cloud montane forests. Biodiver. Conserv. 21:3131–3155.

  61. Rhoades, C.C. & D. C. Coleman. 1999. Nitrogen mineralization and nitrification following land conversion in montane Ecuador. Soil Biol. Biochem. 31:1347–1354.

  62. Rhoades, C.C., Eckert, G.E. & D. C. Coleman. 1998. Effect of pasture trees on soil Nitrogen and organic matter:implications for tropical montane forest restoration. Rest. Ecol. 6:262–270.

    Google Scholar 

  63. Rhoades, C.C., Eckert, G.E. & D. C. Coleman. 2000. Soil carbon differences among forest, agriculture, and secondary vegetation in lower montane Ecuador. Ecol. Appl. 10:497–505.

    Google Scholar 

  64. Runkle, J.R. 1985. Disturbance regimes in Temperate Forests. Pp 17-33 in The ecology of natural disturbance and patch dynamics. Pickett STA, White PS eds. Academic Press, Inc. NY.

  65. Rykiel, E.J. 1985. Towards a definition of ecological disturbance. Aust. J. Ecol. 10:361–365.

    Google Scholar 

  66. Sarmiento, F.O. 1997. Arrested succession in pastures hinders regeneration of Tropandean forests and shreds mountain landscapes. Environ. Conserv. 24:14–23.

  67. Sarmiento, F.O. & L. M. Frolich. 2001. Andean Cloud forest tree lines. Mountain Research and Development 22:278–287.

    Google Scholar 

  68. Van der Maarel, E. 1993. Some remarks on disturbance and its relations to diversity and stability. J. Veg. Sci. 4:733–736.

    Google Scholar 

  69. Veneklaas, E.J. & R. Van Ek. 1990. Rainfall Interception in 2 Tropical Montane Rain-Forests, Colombia. Hydro. Processes 4:311–326.

    Google Scholar 

  70. Weber, M., Gunter, S., Aguirre, N., Stimm, B. & R. Mosandl. 2008. Reforestation of abandoned pastures: silvicultural means to accelerate forest recovery and biodiversity. Pp 431-441 In Gradients in a Tropical mountain Ecosystem of Ecuador. Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Springer-Verlag, Berlin.

  71. White, P.S. & S. T. A. Pickett. 1985. Introduction. Pp 3-13 in The ecology of natural disturbance and patch dynamics. Pickett STA, White PS eds. Academic Press, Inc. NY.

  72. Wilcke, W., Valladarez, H., Stoyan, R., Yasin, S., Valarezo, C. & Zech, W. 2003. Soil properties on a chronosequence of landslides in montane rain forest, Ecuador. Catena 53:79–95.

    Google Scholar 

  73. Wilcke, W., Gunter, S., Alt, F., Geibler, C., Boy, J., Knuth, J., Oelmann, Y., Weber, M., Valarezo, C. & R. Mosandl. 2009. Response of water and nutrient fluxes to improvement fellings in a tropical montane forest in Ecuador. For. Ecol. Manag. 257:1292–1304.

  74. Wunder, S. 1996. Deforestation and the uses of wood in the Ecuadorian Andes. Mountain Res. Develop. 16:367–381.

Download references

Acknowledgements

I thank D.I. Bolnick, D. Dykhuizen, N. Andrew, C. Lacroix and C. T. Marin for commenting on an earlier draft of the manuscript. Some of the research referred to in this review was performed under grants BSR-8811902 and DEB-9411973 from the National Science Foundation to the Institute for Tropical Ecosystem Studies, University of Puerto Rico, and to the USDA Forest Service International Institute of Tropical Forestry as part of the Long-Term Ecological Research Program in the Luquillo Experimental Forest. Additional support was provided by the Forest Service and the University of Puerto Rico.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Randall W. Myster.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Myster, R.W. Disturbance and Response in the Andean Cloud Forest: a Conceptual Review. Bot. Rev. (2020). https://doi.org/10.1007/s12229-020-09219-x

Download citation

Keywords

  • Cultivation
  • Landslide
  • LTER
  • Pasture
  • Plant-plant replacements
  • Tree-fall