Skip to main content
Log in

Comparative Flower and Inflorescence Organogenesis among Genera of Betulaceae: Implications for Phylogenetic Relationships

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Betulaceae have simple flowers but complex inflorescences. Recent phylogenetic analyses using molecular data have produced robust phylogenetic trees of Betulaceae. In this study, we evaluated the phylogenetic value of comparative organogenetic data of reproductive organs in the context of molecular phylogenies. Flower and inflorescence developmental processes of 21 species from all six genera in Betulaceae were documented with scanning electron microscopy. In each pistillate cyme, there are one primary bract, two secondary bracts, and two or three flowers in the six genera; only in Alnus are there two tertiary bracts on the abaxial side. The pistillate flower of all genera but Alnus has tepal primordia. Two tepals stop developing early on, resulting in the lack of tepals in mature flowers of Betula; while the tepals are initiated from a common circular primordium at the base of pistil in Corylus, Ostryopsis, Carpinus, and Ostrya, and the developed tepals with irregular shape and unstable number of lobes are adnate to the top of the pistil. In staminate organogenesis, each cyme has one primary bract and three flowers in all genera; two secondary bracts are only present in Alnus, Betula, and Corylus. Staminate flowers have no tepals except in Alnus and Betula, and exhibit high variation in number of stamens among genera. The number of secondary and tertiary bracts in each pistillate and staminate cyme, as well as the presence of tepals in pistillate and staminate flowers was clarified in all genera. Micro-morphological characters were used to infer the phylogenetic relationships of genera and sections of Betulaceae. Our analyses support the division of two subfamilies: Betuloideae (Alnus and Betula) and Coryloideae (Corylus, Carpinus, Ostrya, and Ostryopsis), and three tribes: Betuleae (Alnus and Betula), Coryleae (Corylus), and Carpineae (Carpinus, Ostrya, and Ostryopsis). The results agree with those from molecular phylogenetic studies, and suggest that micro-morphological characters are phylogenetically informative in Betulaceae, and reproductive organs of Betulaceae have evolved in the direction of reduction in bracts and tepals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Literature Cited

  • Abbe, E. C. 1935. Studies in the phylogeny of the Betulaceae. 1. Floral and inflorescence anatomy. Botanical Gazette 97: 1–67.

  • ———. 1938. Studies in the phylogeny of the Betulaceae. II. Extremes in the variation of floral and inflorescence morphology. Botanical Gazette 99: 431–469.

    Article  Google Scholar 

  • ———. 1974. Flowers and inflorescences of the “Amentiferae”. Botanical Review 40: 159–261.

    Article  Google Scholar 

  • Angiosperm Phylogeny Group III (APG III). 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105–121.

  • Angiosperm Phylogeny Group IV (APG IV). 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1–20.

  • Behnke, H. D. 1973. Sieve-tube plastids of Hamamelididae. Taxon 22: 205–210.

    Article  Google Scholar 

  • Bentham, G. & J. D. Hooker. 1883. Cupuliferae. Genera Plantarum 3: 402–410.

    Google Scholar 

  • Bousquet, J., S. H. Strauss & P. Li. 1992. Complete congruence between morphological and rbcL-based on molecular phylogenies in birches and related species (Betulaceae). Molecular Biology and Evolution 9: 1076–1088.

    CAS  PubMed  Google Scholar 

  • Brunner, F. & D. E. Fairbrothers. 1979. Serological investigations of the Corylaceae. Bulletin of the Torrey Botanical Club 106: 97–108.

    Article  Google Scholar 

  • Chen, Z. D. 1991. Pollen morphology of the Betulaceae. Acta Phytotaxonomica Sinica 29(6): 494–503.

    Google Scholar 

  • ———. 1994a. Phylogeny and phytogeography of the Betulaceae. Acta Phytotaxonomica Sinica 32: 1–31.

    Google Scholar 

  • ———. 1994b. Phylogeny and phytogeography of the Betulaceae (cont.). Acta Phytotaxonomica Sinica 32: 101–153.

  • ———, A. M. Lu & K. Y. Pan. 1990. The embryology of the genus Ostryopsis (Betulaceae). Cathaya 2: 53–62.

  • ———, S. R. Manchester & H. Y. Sun. 1999. Phylogeny and evolution of the Betulaceae as inferred from DNA sequences, morphology, and paleobotany. American Journal of Botany 86: 1168–1181.

  • ———, S. P, Xing, H. X, Liang & A. M. Lu. 2001. Morphogenesis of pistillate reproductive organs in Carpinus turczaninowii and Ostryopsis davidiana (Betulaceae). Acta Botanica Sinica 43: 1110–1114.

  • ———, & Z. Y. Zhang. 1991. A study on foliar epidermis in Betulaceae. Acta Phytotaxonomica Sinica 29(2): 156–163.

  • Crane, P. R. 1981. Betulaceous leaves and fruits from the British Upper Palaeocene. Botanical Journal of Linnean Society 83: 103–136.

    Article  Google Scholar 

  • ———. 1989. Early fossil history and evolution of the Betulaceae. Pp. 87–116. In: Crane, P. R. & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Vol. 2: “Higher” Hamamelidae. Clarendon Press, Oxford.

  • ———, S. R. Manchester & D. L. Dilcher. 1990. A preliminary survey of fossil leaves and well–preserved reproductive structures from the Sentinel Butte Formation (Paleocene) near Almont, North Dakota. Field Geology 20: 1–63.

  • ———, & R. A. Stockey, 1987. Betula leaves and reproductive structures from the Middle Eocene of British Columbia, Canada. Canadian Journal of Botany 65: 2490–2500.

  • Dahlgren, R. 1975. A system of classification of the angiosperms to be used to demonstrate the distribution of characters. Botaniska Notiser 128: 119–147.

    Google Scholar 

  • ———. 1980. A revised system of classification of the angiosperms. Botanical Journal of Linnean Society, 80: 91124.

    Article  Google Scholar 

  • ———. 1983. General aspects of angiosperm evolution and macrosystematics. Nordic Journal of Botany 3: 119–149.

    Article  Google Scholar 

  • Endress, P. K. 2008. The whole and the parts: relationships between floral architecture and floral organ shape, and their repercussions on the interpretation of fragmentary floral fossils. Annals of the Missouri Botanical Garden 95: 101–120.

    Article  Google Scholar 

  • ———. 2010. Disentangling confusions in inflorescence morphology: Patterns and diversity of reproductive shoot ramification in angiosperms. Journal of Systematics and Evolution 48: 225–239.

    Article  Google Scholar 

  • ———, & E. M. Friis. 2006. Rosids-Reproductive structures, fossil and extant, and their bearing on deep relationships: Introduction. Plant Systematics and Evolution 260: 83–85.

  • ———, & M. L. Matthews. 2006. First steps towards a floral structural characterization of the major rosid subclades. Plant Systematics and Evolution 260: 223–251.

  • ———, & S. Stumpf. 1991. The diversity of stamen structures in “Lower” Rosidae ( Rosales, Fagales, Proteales, Sapindales). Botanical Journal of the Linnean Society 107: 217–293.

  • Forest, F., V. Savolainen, M. W. Chase, R. Lupia, A. Bruneau & P. R. Crane. 2005. Teasing apart molecular-versus fossil-based error estimates when dating phylogenetic tree: a case study in the birch family (Betulaceae). Systematic Botany 30(1): 118–133.

  • Furlow, J. J. 1979. The systematics of American species of Alnus (Betulaceae). Rhodora 81: 151–248. 1–121.

    Google Scholar 

  • ———. 1983. The phylogenetic relationships of the genera and infrageneric taxa of the Betulaceae (Abstract). American Journal of Botany 70 (Suppl.): 114.

    Google Scholar 

  • ———. 1990. The genera of Betulaceae in the southeastern United States. Journal of the Arnold Arboretum 71(1): 1–67.

    Article  Google Scholar 

  • Govaerts, R. & D. G. Frodin. 1998. World checklist and bibliography of Fagales. Royal Botanical Gardens, Kew. 17–35.

  • Grimm, G. W. & S. S. Renner. 2013. Harvesting Betulaceae sequences from GenBank to generate a new chronogram for the family. Botanical Journal of the Linnean Society 172: 465–477.

    Article  Google Scholar 

  • Hall, J. W. 1952. The comparative anatomy and phylogeny of Betulaceae. Botanical Gazette 113: 235–270.

    Article  Google Scholar 

  • Hardin, J. W. & J. M. Bell. 1986. Atlas of foliar surface features in woody plants, IX. Betulaceae of eastern United States. Brittonia 38: 133–144.

  • Hjelmqvist, H. 1948. Studies on the floral morphology and phylogeny of the Amentiferae. Botaniska Notiser Suppl. 2: 1–171.

    Google Scholar 

  • ———. 1957. Some notes on the endosperm and embryo development in Fagales and related orders. Botaniska Notiser 110: 173–195.

    Google Scholar 

  • ———. 1960. Notes on some names and combinations within the Amentiferae. Botaniska Notiser 113: 373–380.

    Google Scholar 

  • Hutchinson, J. 1967. The genera of flowering plants. Vol. 2. Oxford, England.

    Google Scholar 

  • ———. 1973. The families of flowering plants arranged according to a new system based on their probable phylogeny. Ed. 3. Oxford, England.

    Google Scholar 

  • Jury, S. 1978. Betulaceae. Flowering plants of the world. Oxford University Press, Oxford.

  • Jussieu, A. L. D. 1789. Genera Plantarum. Apud Viduam Herissant, Paris. 407–411.

  • Kato, H., K. Oginuma, Z. J. Gu, B. Hammel & H. Tobe. 1999. Phylogenetic relationships of Betulaceae based on matK sequences with particular reference to the position of Ostryopsis. Acta Phytotaxonomica et Geobotanica 49: 89–97.

  • Kikuzawa, K. 1982. Leaf survival and evolution in Betulaceae. Annals of Botany 50: 345–354.

    Article  Google Scholar 

  • Koehne, E. 1893. Betulaceae. Deutsche Dendrologie. Verlag von Ferdinand Enke, Stuttgart. 106–120. 

  • Kuprianova, L. A. 1963. On a hitherto undescribed family belonging to the Amentiferae. Taxon 12: 12–13.

    Article  Google Scholar 

  • Laroche, J. & J. Bousquet. 1999. Evolution of the mitochondrial rps3 intron in perennial and annual angiosperms and homology to nad5 intron 1. Molecular Evolution and Biology 16(4): 441–452.

  • Li, H. L. 1976. Betulaceae. Flora of Taiwan 2: 41–48.

    Google Scholar 

  • Li, H. L., W. Wang, P. E. Mortimer, R. Q. Li, D. Z. Li, K. D. Hyde, J. C. Xu, D. E. Soltis & Z. D. Chen. 2015. Large-scale phylogenetic analyses reveal multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms associated with climate change. Scientific Reports 5: 14023.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, J. H. 2008. Sequences of low–copy nuclear gene support the monophyly of Ostrya and paraphyly of Carpinus (Betulaceae). Journal of Systematics and Evolution 46: 333–340.

    Google Scholar 

  • Li, P. C. & S. X. Cheng. 1979. Betulaceae. In: Kuang, K. Z. & P. C. Li (eds.), Flora Republicae Popularis Sinicae 21: 44–137. Science Press, Beijing.

  • ——— & A. K. Skvortsov. 1999. Betulaceae. In: Wu, Z. Y. & P. H. Raven (eds.), Flora of China 4: 286–313. Science Press, Beijing; Missouri Botanical Garden Press, St. Louis.

  • Li, R. Q., Z. D. Chen, A. M. Lu, D. E. Soltis, P. S. Soltis & P. S. Manos. 2004. Phylogenetic relationships in Fagales based on DNA sequences from three genomes. International Journal of Plant Sciences 165: 311–324.

    Article  CAS  Google Scholar 

  • Lin, R. Z., J. Zeng & Z. D. Chen. 2010. Organogenesis of reproductive structures in Betula alnoides (Betulaceae). International Journal of Plant Sciences 171: 586–594.

    Article  Google Scholar 

  • Ma, H., J. Lu, B. B. Liu, B. B. Duan, X. D. He & J. Q. Liu. 2015. Phylotranscriptomic analyses in plants using Betulaceae as an example. Journal of Systematics and Evolution 53: 403–410.

    Article  Google Scholar 

  • Maggia, L. & J. Bousquet. 1994. Molecular phylogeny of the actinorhizal Hamamelidae and relationships with host promiscuity towards Frankia. Molecular Ecology 3: 459–467.

    Article  Google Scholar 

  • Manchester, S. R. & Z. D. Chen. 1996. Palaeocarpinus aspinosa sp. nov. (Betulaceae) from the Paleocene of Wyoming, USA. International Journal of Plant Sciences 157: 644–655.

    Article  Google Scholar 

  • ———, & Z. D. Chen. 1998. A new genus of Coryloideae (Betulaceae) from the Paleocene of North America. International Journal of Plant Sciences 159: 522–532.

  • ———, & P. R. Crane. 1987. A new genus of Betulaceae from the Oligocene of western North America. Botanical Gazette 148: 263–273.

  • ———, K. B. Pigg & P. R. Crane. 2004. Palaeocarpinus dakotensis sp. n. (Betulaceae: Coryloideae) and associated staminate catkins, pollen, and leaves from the Paleocene of North Dakota. International Journal of Plant Sciences 165: 1135–1148.

  • Manos, P. S. 1997. Systematics of Nothofagus (Nothofagaceae) based on rDNA spacer sequences (ITS): taxonomic congruence with morphology and plastid sequences. American Journal of Botany 84: 1137–1137.

    Article  CAS  PubMed  Google Scholar 

  • ———, & K. P. Steele. 1997. Phylogenetic analyses of “higher” Hamamelididae based on plastid sequence data. American Journal of Botany 84: 1407–1407.

  • ———, Z. K. Zhou & C. H. Cannon. 2001. Systematics of Fagaceae: phylogenetic tests of reproductive trait evolution. International Journal of Plant Sciences 162: 1361–1379.

  • Melchior, H. 1964. Betulaceae. Pp. 47–49. In: Melchior, H. (ed.), A. Engler’s Syllabus der Pflanzenfamilien. Vol. 2. Ed. 12. Gebrüder Borntraeger, Berlin.

  • Pigg, K. B., S. R. Manchester & W. C. Wehr. 2003. Corylus, Carpinus, and Palaeocarpinus (Betulaceae) from the middle Eocene Klondike Mountain and Allenby formations of northwestern North America. International Journal of Plant Sciences 164: 807–882.

    Article  Google Scholar 

  • Prantl, K. 1894. Betulaceae. In: Engler, A. & K. Prantl (eds.), Die Natürlichen Pflanzenfamilien 3(1): 38–46. Engelmann, Leipzig.

  • Qiu, Y. L., M. W. Chase, S. B. Hoot, F. Conti, P. R. Crane, K. J. Sytsma & C. R. Parks. 1998. Phylogenetics of the Hamamelidae and their allies: parsimony analyses of nucleotide sequences of the plastid gene rbcL. International Journal of Plant Sciences 159: 891–905.

    Article  CAS  Google Scholar 

  • Regel, E. 1861. Monographische Bearbeitung der Betulaceen. Nouveaux Mémoires de la Société Impériale des Naturalistes de Moscou 13(2): 59–187.

    Google Scholar 

  • ———. 1868. Betulaceae. In: de Candolle A. & C. de Candolle (eds.), Prodromous Systematis Naturalis Regni Vegetabilis Sumptibus Victoris Masson et Filii, Paris. 16: 181–189. 

  • Rehder, A. 1940. Manual of cultivated trees and shrubs. Ed. 2. The Macmillan Company, New York. Corylaceae, 124–126.

  • Rendle, A. B. 1925. The classification of flowering plants. Vol. 2. Cambridge University Press, Cambridge. 23–30.

  • Savard, L., M. Michaud & J. Bousquet. 1993. Genetic diversity and phylogenetic relationships between birches and alders using ITS, 18S rRNA, and rbcL gene sequences. Molecular Phylogenetics and Evolution 2: 112–118.

  • Spach, A. E. 1841. Revisio Betulacearum. Annales des Sciences Naturelles, ser. 215: 182–212.

  • Soltis, D. E., P. S. Soltis, D. R. Morgan, S. M. Swensen, B. C. Mullin, J. M. Dowd & P. G. Martin. 1995. Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proceedings of the National Academy of Sciences USA 92: 2647–2651.

  • Sun, F. & R. A. Stockey. 1992. A new species of Palaeocarpinus (Betulaceae) based on infructescences, fruits, and associated staminate inflorescences and leaves from the Paleocene of Alberta, Canada. International Journal of Plant Sciences 153: 136–146.

  • Takhtajan, A. 1969. Flowering plants: Origin and dispersal. Oliver & Boyd, Edinburgh. 

  • ———. 1980. Outline of the classification of flowering plants (Magnoliophyta). Botanical Review 46: 225–359.

    Article  Google Scholar 

  • Thorne, R. F. 1973. The Amentiferae or Hamamelidae as an artificial group: a summary statement. Brittonia 25: 395–405.

    Article  Google Scholar 

  • ———. 1983. Proposed new realignments in the angiosperms. Nordic Journal of Botany 3: 85–117.

    Article  Google Scholar 

  • Werner, G. D. A., W. K. Cornwell, J. I. Sprent, J. Kattge & E. T. Kiers. 2014. A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nature Communication 5: 4087.

    Article  CAS  Google Scholar 

  • Winkler, H. 1904. Betulaceae. In: Engler, A. (ed.), Das Pflanzenreich 19 (IV. 6.): 1–149. Engelmann, Leipzig.

  • Yoo, K. O. & J. Wen. 2007. Phylogeny of Carpinus and subfamily Coryloideae (Betulaceae) based on chloroplast and nuclear ribosomal sequence data. Plant Systematics and Evolution 267: 25–35.

    Article  Google Scholar 

  • Zhang, L. F., J. Y. Zhu, P. Shen, B. Q. Ren & Y. Liang. 2013. The organogenesis of inflorescence and flower of Corylus heterophylla and C. avellana. Journal of Tonghua Normal University (Natural Science) 34(12): 61–63.

  • Zhu, J. Y. & J. M. Lu. 2008. Morphogenesis of inflorescence and floret in Alnus (Betulaceae). Journal of Systematics and Evolution 46: 641–650.

    Google Scholar 

  • ———, L. F. Zhang, P. Shen, B. Q. Ren, Y. Liang & Z. D. Chen. 2014a. The morphogenesis of inflorescence and flower in Corylus (Betulaceae). Plant Diversity and Resources 36(4): 433–442.

  • ———, L. F. Zhang, P. Shen, B. Q. Ren, Y. Liang & Z. D. Chen. 2014b. Wind pollination characteristics of styles in Betulaceae. Chinese Bulletin of Botany 49(5): 524–538.

  • ———, L. F. Zhang, P. Shen, B. Q. Ren, Y. Liang & Z. D. Chen. 2014c. Inflorescence and floral organ development in Carpinus cordata. Bulletin of Botanical Research 34(2): 170–176.

  • Swofford, D. L. 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Ver. 4. Sinauer Associates, Sunderland, MA.

Download references

Acknowledgments

We thank Dr. Limin Lu for her morphological analyses and Professor Peter K. Endress for his critical review, in particular suggestions on the usage of flower and inflorescence terms that help improve the manuscript. This study was supported by the National Natural Science Foundation of China (NNSF 31170180 and NNSF 31270268), Field work was partially supported by CAS International Research & Education Development Program (Grant No. SAJC201315), and MOST Science and Technology Basic Work (2013FY112100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junyi Zhu, Jianhua Li or Zhiduan Chen.

Appendices

Appendix 1

Morphological characters including floral developmental data used in phylogenetic analysis (Hall, 1952; Hjelmqvist, 1957, 1960; Hardin & Bell, 1986; Crane, 1989; Chen et al., 1990; Chen, 1991; Chen & Zhang, 1991; Manos, 1997; Manos et al., 2001; Chen et al., 1999; Chen et al., 2001; Zhu & Lu, 2008; Lin et al., 2010; Zhu et al., 2014a, b, c; and this study)

  1. 1.

    Inflorescence---bisexual (0), unisexual (1)

  2. 2.

    Female cyme---secondary bract laminar (0), leaf-shaped (1)

  3. 3.

    Female cyme---tertiary bract present (0), absent (1)

  4. 4.

    Female cyme---1 to 3 flowers (0), 1 or 2 flowers (1)

  5. 5.

    Female flower---pollen tube entering the stigma by papillae, absent (0), present (1)

  6. 6.

    Female flower--- pollen tube entering the stigma by stylar epidermal cells or intercellular spaces, present (0), absent (1)

  7. 7.

    Male cyme---secondary bracts 2 (0), none(1)

  8. 8.

    Male cyme---Tertiary bracts 2 (0), none (1)

  9. 9.

    Male flower---tepal present (0), absent (1)

  10. 10.

    Male flower—pistillode present (0), absent (1)

  11. 11.

    Male flower---thecae and filaments not or slightly divided longitudinally (0), thecae separated, filaments partly divided (1), thecae separated, filaments completely divided (2)

  12. 12.

    Wood---vessel perforations scalariform (0), simple (1)

  13. 13.

    Wood---vessel with spiral thickening absent (0), present (1)

  14. 14.

    Wood---tracheids present (0), absent (1)

  15. 15.

    Wood---rays heterocellular (0), homocellular (1)

  16. 16.

    Wood---tyloses absent (0), present (1)

  17. 17.

    Leaves---embedded glands present (0), absent (1)

  18. 18.

    Leaves---brachyparacytic stomatal apparatus absent (0), present (1)

  19. 19.

    Leaves—teeth absent (0), simple (1), compound (2)

  20. 20.

    Pollen---endexine thickening present (0), absent (1)

  21. 21.

    Pollen---operculum absent (0), present (1)

  22. 22.

    Pollen---arci present (0), absent (1)

  23. 23.

    Fruits---laterally winged nutlets present (0), absent (1)

  24. 24.

    Fruits---dispersal units with adnate persistent involucre absent (0), present (1)

  25. 25.

    Seeds---germination epigeal (0), hypogeal (1)

Appendix 2

Table 4 Data matrix for morphological characters used in this analysis (including the outgroup Nothofagus; “?” indicating not applicable

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Zhang, L., Ren, B. et al. Comparative Flower and Inflorescence Organogenesis among Genera of Betulaceae: Implications for Phylogenetic Relationships. Bot. Rev. 84, 79–98 (2018). https://doi.org/10.1007/s12229-017-9195-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-017-9195-0

Keywords

Navigation