Advertisement

Light intensity triggers different germination responses to fire-related cues in temperate grassland species

  • Luis López-MársicoEmail author
  • Lucía Farías-Moreira
  • Felipe Lezama
  • Alice Altesor
  • Claudia Rodríguez
Article

Abstract

Fire is a widespread disturbance that affects plant individuals and populations. In fire-prone environments, such as Mediterranean-type ecosystems, many species are stimulated to germinate by fire-related cues, for example heat and smoke. However, little is known about the effect of fire on seed germination of species from herbaceous communities like temperate grasslands. In this study we assessed the germination response to direct (heat shock and smoke) and indirect (light intensity) fire-related cues of five herbaceous and one shrubby species that occur in natural grasslands of eastern Uruguay. All species are native and belong to the Poaceae (2 species) and Asteraceae (4 species) families. Seeds were subjected to smoke and heat shock treatments (50°C, 100°C) under two light intensities (high-light and low-light). We found that direct fire-related cues did not stimulate germination in any of the species studied. Most of the species showed a reduced percentage of germination or a delayed mean germination time, relative to the control treatment, when exposed to heat shock at 100°C or smoke. However, the seeds survived the exposure to high temperatures, indicating that they can tolerate a fire event. Light was found to be a key germination cue. Treated seeds responded to fire-related cues mainly when we simulated the high-light environment after fire. Our results contribute to the growing body of evidence that many species of South American grasslands do not rely on recruitment by seeds after a fire event, but rather on the ability to resprout by means of subterranean or protected basal buds.

Keywords

heat shock smoke high light conditions seed germination prescribed burning Uruguay 

Notes

Acknowledgements

We thank members of the Cooperativa Agraria Quebrada de los Cuervos; Dirección de Turismo of the Intendencia Municipal de Treinta y Tres and Daniel Erman, Director of the Paisaje Protegido Quebrada de los Cuervos for the support and logistic facilitation provided throughout the process. We thank Federico Gallego and Valerie Cayssials for technical assistance. We thank two anonymous reviewers and Borja Jiménez-Alfaro for useful comments on the manuscript. The research was funded by the following organizations: Agencia Nacional de Investigación e Innovación (POS-NAC-2013-11159 and FCE- 2013-100601), Comisión Sectorial de Investigación Científica (INI-2013), Instituto Nacional de Investigación Agropecuaria (FPTA-305), Comisión Académica de Posgrado and the Inter-American Institute for Global Change Research (IAI) CRN3095, which is supported by the US National Science Foundation (Grant GEO-1128040).

References

  1. Andrade BO, Marchesi E, Burkart S, Setubal RB, Lezama F Perelman S, Schneider AA, Trevisan R, Overbeck GE, Boldrini II (2018) Vascular plant species richness and distribution in the Río de la Plata grasslands. Bot J Linn Soc 188:250–256Google Scholar
  2. Baeza S, Rama G, Lezama F (2019) Cartografía de los pastizales naturales en las regiones geomorfológicas de Uruguay predominantemente ganaderas. Ampliación y actualización. In Altesor A, López-Mársico L, Paruelo JM (eds) Bases ecológicas y tecnológicas para el manejo de pastizales II. Serie FPTA, INIA, Montevideo, 27–47 ppGoogle Scholar
  3. Baskin CC, Baskin JM (2014) Seeds: ecology, biogeography and evolution of dormancy and germination. Elsevier Academic Press: San Diego, USA (2nd edn), 1586 ppGoogle Scholar
  4. Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–394CrossRefPubMedGoogle Scholar
  5. Burger BV, Pošta M, Light ME, Kulkarni MG, Viviers MZ, Van Staden J (2018) Morebutenolides from plant-derived smoke with germination inhibitory activity against karrikinolide. S African J Bot 115:256–263CrossRefGoogle Scholar
  6. Carthey AJ, Tims A, Geedicke I, Leishman MR (2018) Broad-scale patterns in smoke-responsive germination from the south-eastern Australian flora. J Veg Sci 29:737–745CrossRefGoogle Scholar
  7. Clarke PJ, Lawes MJ, Midgley JJ, Lamont BB, Ojeda F, Burrows GE, Enright NJ, Knox KJE (2013) Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytol 197:19–35CrossRefPubMedGoogle Scholar
  8. Coughenour MB (1985) Graminoid responses to grazing by large herbivores: adaptations, exaptations, and interacting processes. Ann Missouri Bot Gard 72:852–863CrossRefGoogle Scholar
  9. Dayamba SD, Tigabu M, Sawadogo L, Oden PC (2008) Seed germination of herbaceous and woody species of the Sudanian savanna-woodland in response to heat shock and smoke. Forest Ecol Managem 256:462–470CrossRefGoogle Scholar
  10. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. (2016) InfoStat versión 2016. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar (last access 1 October 2018)
  11. Dixon KW, Roche S, Pate JS (1995) The promotive effect of smoke derived from burnt native vegetation on seed-germination of Western Australian plants. Oecologia 101:185–192CrossRefPubMedGoogle Scholar
  12. Fichino BS, Dombroski JR, Pivello VR, Fidelis A (2016) Does fire trigger seed germination in the Neotropical Savannas? Experimental tests with six Cerrado species. Biotropica 48:181–187Google Scholar
  13. Fidelis AT, Delgado Cartay MD, Blanco CC, Muller SC, Pillar VDP, Pfadenhauer JS (2010) Fire intensity and severity in Brazilian campos grasslands. Interciencia (Caracas) 35:739–745Google Scholar
  14. Fidelis A, Daibes LF, Martins AR (2016) To resist or to germinate? The effect of fire on legume seeds in Brazilian subtropical grasslands. Acta Bot Brasil 30:147–151CrossRefGoogle Scholar
  15. Flematti GR, Dixon KW, Smith SM (2015) What are karrikins and how were they ‘discovered’ by plants? BMC Biol 13:108CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gibson DJ (2009) Grasses and grassland ecology. Oxford University Press, 314 ppGoogle Scholar
  17. Hulbert L (1988) Causes of fire effects in tallgrass prairie. Ecology 69:46–58CrossRefGoogle Scholar
  18. INIA-GRASS, Instituto Nacional de Investigación Agropecuaria (2018) Banco de datos agroclimáticos 1965–2018. Estación experimental Treinta y Tres, Uruguay. Available at http://www.inia.uy/gras/Clima/Banco-datos-agroclimatico (last access 1 June 2018)
  19. Jiménez-Alfaro B, Silveira FA, Fidelis A, Poschlod P, Commander LE (2016) Seed germination traits can contribute better to plant community ecology. J Veg Sci 27:637–645CrossRefGoogle Scholar
  20. Keeley JE, Fortheringham CJ (2000) Role of fire in regeneration from seed. In Fenner M (ed) Seeds: the ecology of regeneration in plant communities. Wallingford, CABI, pp 311–330CrossRefGoogle Scholar
  21. Keeley JE, Fotheringham CJ (1998) Smoke-induced seed germination in California chaparral. Ecology 79:2320–2336CrossRefGoogle Scholar
  22. Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW (2012) Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University Press, Cambridge, 515 ppGoogle Scholar
  23. Kin AG, Suárez CE, Chirino CC, Ávila PL, Morici EF (2016) Impact of heat on seed germination of three perennial grasses in the semiarid region in Central Argentina. Austral J Bot 64:451–455CrossRefGoogle Scholar
  24. Koo HJ, Park SM, Kim KP, Suh MC, Lee MO, Lee SK, Xinli X, Hong CB (2015) Small heat shock proteins can release light dependence of tobacco seed during germination. Pl Physiol 167:1030–1038CrossRefGoogle Scholar
  25. Laterra P (1997) Post-burn recovery in the flooding Pampa: impact of an invasive legume. J Range Managem 50:274–277CrossRefGoogle Scholar
  26. Laterra P, Vignolio OR, Linares MP, Giaquinta A, Maceira N (2003) Cumulative effects of fire on a tussock Pampa grassland. J Veg Sci 14:43–54CrossRefGoogle Scholar
  27. Le Stradic S, Silveira FA, Buisson E, Cazelles K, Carvalho V, Fernandes GW (2015) Diversity of germination strategies and seed dormancy in herbaceous species of campo rupestre grasslands. Austral Ecol 40:537–546CrossRefGoogle Scholar
  28. Lezama F, Pereira M, Altesor A, Paruelo JM (2019) Grasslands of Uruguay: classification based on vegetation plots. Phytocoenologia.  https://doi.org/10.1127/phyto/2019/0215
  29. Long RL, Stevens JC, Griffiths EM, Adamek M, Gorecki MJ, Powles SB, Merritt DJ (2011) Seeds of Brassicaceae weeds have an inherent or inducible response to the germination stimulant karrikinolide. Ann Bot (Oxford) 108:933–944CrossRefGoogle Scholar
  30. Merritt DJ, Kristiansen M, Flematti GR, Turner SR, Ghisalberti EL, Trengove RD, Dixon KW (2006) Effects of a butenolide present in smoke on light-mediated germination of Australian Asteraceae. Seed Sci Res 16:29–35CrossRefGoogle Scholar
  31. MGAP-DIEA (2011) Censo general agropecuario. Montevideo. Uruguay. Available at http://www.mgap.gub.uy (last accessed 25 June 2018)
  32. Milberg P, Andersson L, Thompson K (2000) Large-seeded spices are less dependent on light for germination than small-seeded ones. Seed Sci Res 10:99–104Google Scholar
  33. Moreira B, Tormo J, Estrelles E, Pausas JG (2010) Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Ann Bot (Oxford) 105:627–635CrossRefGoogle Scholar
  34. Ortega E, Laterra P (2003) Fire-induced colonization of a Flooding Pampa grassland by thistles: remnant litter and interference effects. Appl Veg Sci 6:35–44CrossRefGoogle Scholar
  35. Overbeck GE, Pfadenhauer J (2007) Adaptive strategies in burned subtropical grassland in southern Brazil. Flora 202:27–49CrossRefGoogle Scholar
  36. Overbeck GE, Müller SC, Pillar VD, Pfadenhauer J (2006) No heat-stimulated germination found in herbaceous species from burned subtropical grassland. Pl Ecol 184:237–243CrossRefGoogle Scholar
  37. Paula S, Pausas JG (2008) Burning seeds: germinative response to heat treatments in relation to resprouting ability. J Ecol 96:543–552CrossRefGoogle Scholar
  38. Pausas JG, Bradstock RA, Keith DA, Keeley JE (2004) Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85:1085–1100CrossRefGoogle Scholar
  39. Ramos DM, Liaffa AB, Diniz P, Munhoz CB, Ooi, MK, Borghetti F, Valls JFM (2016) Seed tolerance to heating is better predicted by seed dormancy than by habitat type in Neotropical savanna grasses. Int J Wildland Fire 25:1273–1280Google Scholar
  40. Ranal MA, Santana DG (2006) How and why to measure the germination process? Revista Brasil Bot 29:1–11CrossRefGoogle Scholar
  41. Raunkiaer C (1934) The life forms of plants and statistical plant Geography. Claredon, OxfordGoogle Scholar
  42. Reich PB, Wright IJ, Cavender-Bares J, Craine JM., Oleksyn J, Westoby M, Walters MB (2003) The evolution of plant functional variation: traits, spectra and strategies. Int J Pl Sci 164:143–164CrossRefGoogle Scholar
  43. Royo Pallarés O, Berretta EJ, Maraschin GE (2005) The South American Campos ecosystem. In Suttie J, Reynolds SG, Batello C (eds) Grasslands of the world. FAO, Rome, pp 171–219Google Scholar
  44. Santana VM, Baeza MJ, Blanes MC (2013) Clarifying the role of fire heat and daily temperature fluctuations as germination cues for Mediterranean Basin obligate seeders. Ann Bot (Oxford) 111:127–134CrossRefGoogle Scholar
  45. Sawilowsky SS (1990) Nonparametric tests of interaction in experimental design. Rev Educ Res 60:91–126CrossRefGoogle Scholar
  46. Soriano A, León RJC, Sala OE, Lavado RS, Deregibus VA, Cauhépé MA, Scaglia OA, Velázquez CA, Lemcoff JH (1991) Rio de la Plata grasslands. In Coupland R (ed) Natural grasslands: introduction and western hemisphere, Elsevier, Amsterdam, pp 367–407Google Scholar
  47. Tavşanoğlu Ç, Ergan G, Çatav ŞS, Zare G, Küçükakyüz K, Özüdoğru B (2017) Multiple fire-related cues stimulate germination in Chaenorhinum rubrifolium (Plantaginaceae), a rare annual in the Mediterranean Basin. Seed Sci Res 27:26–38CrossRefGoogle Scholar
  48. Van Staden J, Brown NA, Jäger AK, Johnson TA (2000) Smoke as a germination cue. Pl Spec Biol 15:167–178CrossRefGoogle Scholar
  49. Venable DL, Lawlor L (1980) Delayed germination and dispersal in desert annuals: escape in space and time. Oecologia 46:272–282CrossRefPubMedGoogle Scholar
  50. Verdú M (2000) Ecological and evolutionary differences between Mediterranean seeders and resprouters. J Veg Sci 11:265–268CrossRefGoogle Scholar
  51. Walter H (1979) Vegetation of the Earth and ecological systems of the geo-biosphere. Springer Verlag, New York, 276 ppCrossRefGoogle Scholar
  52. Waters ER (2013) The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot 64:391–403CrossRefPubMedGoogle Scholar
  53. Zhang C, Ma Z, Du G (2017) Light-dependent associations of germination proportion with seed mass in Alpine grasslands of the Qinghai-Tibet plateau. Ecol Engin 105:306–313CrossRefGoogle Scholar
  54. Zupo T, Baeza MJ, Fidelis A (2016) The effect of simulated heat-shock and daily temperature fluctuations on seed germination of four species from fire-prone ecosystems. Acta Bot Brasil 30:514–519CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2019

Authors and Affiliations

  1. 1.Grupo de Ecología de Pastizales, Instituto de Ecología y Ciencias Ambientales, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  2. 2.Departamento de Sistemas Ambientales, Facultad de AgronomíaUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations