Advertisement

Folia Geobotanica

, Volume 53, Issue 1, pp 1–15 | Cite as

Environmental controls of raised-bog vegetation in the Baltic boreo-nemoral zone

  • Anna Mežaka
  • Agnese Priede
  • Linda Dobkeviča
  • Maaike Y. Bader
Article

Abstract

Raised peat bogs harbor unique vegetation types in specific hydrological conditions. Environmental controls of peat bog vegetation are relatively well known for the boreal zone, while in the European boreo-nemoral zone healthy raised bogs are nowadays very rare. By contrast, Latvia, located in the transition zone between the nemoral and the boreal biomes, still has a large number of active raised bogs. The aim of the present study was to characterize the environmental controls on raised bog vegetation structure, species composition and ecology in Latvia. The study includes 17 raised bogs, where vascular plants, bryophytes and lichens were recorded in 480 sample plots and related to environmental variables (microtopography, litter cover, electric conductivity, pH, and macroelements Na, K, Ca, Mg and P in bog surface waters). The factor best explaining total species richness and composition was microtopography, which also affected most other explanatory factors. Thereby total species richness and cover were highest on hummocks. However, the importance and direction of the effects of microtopography and the other factors differed between vegetation groups. When disregarding microtopography, species composition was most strongly correlated with alkaline ions and litter cover and for bryophytes also with vascular plant cover. The present study is the first wide-scale study in Latvia relating raised bog vegetation to environmental conditions.

Keywords

Microtopography Peatbogs Sphagnum Vegetation 

Notes

Acknowledgements

The present study was financially supported by European Social Fund, project ‘Multi-disciplinary group of young scientists for research of Latvian peatlands and their resources, long-term use and conservation’ (PuRest, No. 1DP/1.1.1.2.0/13/APIA/VIAA/044). Thanks to Gunta Spriņģe, Māris Kļaviņš, Liene Auniņa, and Oskars Keišs for fruitful discussions and practical help in field work. We are grateful to Dmitrijs Poršņovs, Konstatins Viligurs, and Lauris Arbidāns for help in chemical analysis of surface waters. The authors are grateful to reviewers for the valuable comments helping to improve the manuscript. The research complies with the current laws of Latvia.

References

  1. Abolin AA (1983) Polytrichum strictum (Polytrichaceae) – an original species or a modificant P. juniperinum? Bot Z 70: 1503–1511Google Scholar
  2. Āboliņa A, Piterāns A, Bambe B (2015) Latvijas ķērpji un sūnas. Taksonu saraksts (Lichens and bryophytes in Latvia. Checklist). DU AA „Saule”, Latvijas Mežzinātnes institūts „Silava”, SalaspilsGoogle Scholar
  3. Ahti T., Hämet-Ahti L., Jalas J. (1968) Vegetation zones and their sections in northwestern Europe. Ann Bot Fenn 5:169–211Google Scholar
  4. Anderson DS, Davis RB (1997) The vegetation and its environments in Maine peatlands. Canad J Bot 78:1785–1805CrossRefGoogle Scholar
  5. APHA/AWWA/WEF (2005) In Eaton A, Clesceri L, Greenberg A (eds) Standard methods for the examination of water and wastewater. 21st ed. American Public Health Association, Washington, DCGoogle Scholar
  6. Bambe B (1994) Meža un purva fitocenožu attiecības Teiču rezervātā (The relationships in forest and bog phytoceonosis in Teiči Nature rezerve). Disertācijas kopsavilkums. Latvijas Universitāte, RīgaGoogle Scholar
  7. Bates D, Maechler M, Boener B, Walker S (2015) Fitting linear mixed-effect models using lme4. J Statist Softw 67:1–48CrossRefGoogle Scholar
  8. Belland RJ, Vitt DH (1995) Bryophyte vegetation patterns along environmental gradients in continental bogs. Ecoscience 2:395–407CrossRefGoogle Scholar
  9. Bergsma B, Quinlan C (2009) Sifton bog environmentally significant area conservation master plan 2009–2019. City of London, Upper Thames River Conservation AuthorityGoogle Scholar
  10. Bragazza L, Gerdol R (1999) Hydrology, groundwater chemistry and peat chemistry in relation to habitat conditions in a mire on the South-eastern Alps of Italy. Pl Ecol 144:243–256CrossRefGoogle Scholar
  11. Ellenberg H (1988) Vegetation ecology of Central Europe. 4th edition. Cambridge University Press, CambridgeGoogle Scholar
  12. Galeniece M (1935) Latvijas purvu un mežu attīstība pēcledus laikmetā (Latvian wetland and forest development after glaciation). Latvijas Universitātes raksti, Lauksaimniecības fakultātes sērija II:20Google Scholar
  13. Galeniece M (1960) Dažu Kurzemes purvu stratigrāfija un ģenēze (Stratigraphy and genesis of some of Kurland wetlands). Latvijas PSR veģetācija III:21–41Google Scholar
  14. Galeniece M (1962) Latvijas PSR purvu rajonēšana. In Krūmiņš K (ed) Vissavienības augsnes pētnieku biedrības Latvijas filiāles Rakstu krājums (Proceedings of Union soil researcher’s society). Latvijas PSR Zinātņu Akadēmijas izdevniecība, Riga, pp 5–15Google Scholar
  15. Gavrilova Ģ, Šulcs V (1999) Latvijas vaskulāro augu flora: Taksonu saraksts (Vascular plant flora of Latvia: Taxon list). Latv. Akad. b-ka, RigaGoogle Scholar
  16. Goffinet B, Shaw AJ (2009) Bryophyte biology. Second edition. Cambridge University Press, CambridgeGoogle Scholar
  17. Gorham E, Janssens JA (1992) Concepts of fen and bog reexamined in relation to bryophyte cover and the acidity of surface waters. Acta Soc Bot Poloniae 61:7–20CrossRefGoogle Scholar
  18. Jiroušek M, Poulíčková A, Kintrová A, Opravilová V, Hájková P, Rybníček K, Koči M, Bergová K, Hnilica R, Mikulášková E, Králová Š, Hájek M (2013) Long-term and contemporary environmental conditions as determinants of the species composition of bog organisms. Freshwater Biol 58:2196–2207CrossRefGoogle Scholar
  19. Latvijas Vides, ģeoloģijas un meteoroloģijas centrs (2015) (LVĢMC 2015). Latvijas klimats (Latvian climate). Available at https://www.meteo.lv/lapas/vide/klimata-parmainas/latvijas-klimats/latvijas-klimats?id=1199&nid=562
  20. McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software, Gleneden Beach (www.pcord.com)Google Scholar
  21. Namatēva A (2010) Mikroainavas Teiču, Eiduku, Kraukļu un Lielsalas purvā Austrumlatvijā (Microlandscapes in Teiču, Eiduku, Kraukļu, Lielsalas bogs in Eastern Latvia). LU Raksti 752:98–105Google Scholar
  22. Nomals P (1930) Latvijas purvi (Les Marias de la Latvie, Latvian wetlands). Ģeogr Raksti II 2:1–46Google Scholar
  23. Pakalne M, Kalniņa L (2005) Mire ecosystems in Latvia. Stapfia 35:147–174Google Scholar
  24. Pakalne M (2008) Mire habitats and their protection. In Pakalne M (eds) Mire conservation and management in especially protected nature areas in Latvia. Latvijas Dabas fonds, Riga, pp 9−19Google Scholar
  25. Pohlert T (2014) The pairwise multiple comparison of mean ranks. Package (PMCMR). R package. Available at http://CRAN.R-project.org/package=PMCMR
  26. Pouliot R, Rochefort L, Karofeld E, Mercier C (2011) Initiation of Sphagnum moss hummocks in bogs and the presence of vascular plants: Is there a link? Acta Oecol 37: 346–354CrossRefGoogle Scholar
  27. Proctor MCF (2003) Malham Tarn Moss: the surface-water chemistry of an ombrotrophic bog. Field Stud 10:553–578Google Scholar
  28. R core team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org
  29. Rydin H, Jeglum JK (2013) The biology of peatlands. Second edition. Oxford University Press, OxfordCrossRefGoogle Scholar
  30. Sjörs H. (1950) On the relation between vegetation and electrolytes in North Swedish mire waters. Oikos 2:241–258CrossRefGoogle Scholar
  31. Udvardy MDF (1975) Classification of the biogeographical provinces of the world. IUCN Occassional Paper No. 8, International Union for Conservation of Nature and Natural ResourcesGoogle Scholar
  32. van Breemen N (1995) How Sphagnum bogs down other plants. Tree 10:270–275PubMedGoogle Scholar
  33. Vitt DH, Chee WL (1990) The relationships of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada. Vegetatio 89:87–106CrossRefGoogle Scholar
  34. Wendel S, Moore T, Bubier J, Blodau C (2011) Experimental nitrogen, phosphorus, and potassium deposition decreases summer soil temperatures, water contents, and soil CO2 concentrations in a northern bog. Biogeosciences 8:585–595CrossRefGoogle Scholar
  35. Whitehouse HE, Bayley SE (2005) Vegetation patterns and biodiversity of peatland plant communities surrounding mid-boreal wetland ponds in Alberta, Canada. Canad J Bot 83:621–637CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2018

Authors and Affiliations

  • Anna Mežaka
    • 1
    • 2
  • Agnese Priede
    • 1
  • Linda Dobkeviča
    • 1
  • Maaike Y. Bader
    • 2
  1. 1.Institute of BiologyUniversity of LatviaSalaspilsLatvia
  2. 2.Faculty of GeographyMarburg UniversityMarburgGermany

Personalised recommendations