Skip to main content
Log in

Substantial Genome Size Variation in Taraxacum stenocephalum (Asteraceae, Lactuceae)

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

There are only a few exceptions to the rule that polyploidy in Taraxacum is associated with agamospermy. One of them is the sexual, tetraploid species Taraxacum stenocephalum. Incidentally, remarkable variation in karyology was found in this species. The present study aims to confirm this variation by an extensive screen of nuclear DNA content. Individuals from two large populations in the Lesser and Greater Caucasus, Georgia were analyzed using flow cytometry to ascertain intraspecific nuclear DNA content variation. Across the whole data set comprising all 159 individuals, a 1.223-fold difference was detected based on propidium iodide (PI) analyses. To verify this finding, we compared flow-cytometric data obtained using DAPI (4′,6-diamidino-2-phenylindole) and PI staining using a representative subset of individuals. This comparison revealed a 1.194-fold difference in DNA content for DAPI and a 1.219-fold difference for PI. Mean nuclear genome size in absolute terms (2C value ± s.d.) was estimated at 4.38 ± 0.21 pg, ranging from 4.01 pg to 4.89 pg, despite the invariable chromosome counts of 2n = 32. A regression analysis comparing the datasets for DAPI and PI staining found a strong correlation between data obtained by the DAPI and PI dyes (R = 0.976; P = 0.0001). Simultaneous high-resolution flow-cytometric analyses also proved the accuracy of our findings. We discuss possible sources of these large differences in DNA content within Taraxacum stenocephalum. Further research is needed to identify the source of this remarkable variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bennetzen JL (2002) Opening the door to comparative plant biology. Science 296:60–63

    Article  PubMed  Google Scholar 

  • Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Developm 15:621–627

    Article  CAS  Google Scholar 

  • Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot (Oxford) 95:127–132

    Article  CAS  Google Scholar 

  • Caceres ME, Pace CD, Mugnozza GTS, Kotsonis P, Ceccarelli M, Cionini PG (1998) Genome size variations within Dasypyrum villosum: correlations with chromosomal traits, environmental factors and plant phenotypic characteristics and behavior in reproduction. Theor Appl Genet 96:559–567

    Article  Google Scholar 

  • Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot (Oxford) 95:99–110

    Article  Google Scholar 

  • Doležel J, Göhde W (1995) Sex determination in dioecious plants Melandrium album and Melandrium rubrum using high-resolution flow cytometry. Cytometry 19:103–106

    Article  PubMed  Google Scholar 

  • Doležel J, Doleželová M, Novák FJ (1994) Nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biol Pl 36:351–357

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protocols 2:2233–2244

    Article  Google Scholar 

  • Evans GM, Durrant A, Rees H (1966) Associated nuclear changes in the induction of flax genotrophs. Nature 212:697–699

    Article  Google Scholar 

  • Flavell RB, Bennett MD, Smith JB, Smith DB (1974) Genome size and proportion of repeated nucleotide DNA sequence in plants. Biochem Genet 12:257–269

    Article  PubMed  CAS  Google Scholar 

  • Greilhuber J (1988) Critical reassessment of DNA content variation in plants. In Brandham PE (ed) Proceedings of the Third Chromosome Conference. Kew, 14 September 1987. H.M.S.O., London, pp 39–50

    Google Scholar 

  • Greilhuber J (1997) The problem of variable genome size in plants (with special reference to woody plants). In Borzan Z, Schlarbaum SE (eds) Cytogenetic studies of forest trees and shrub species. Croatian Forests, Inc. and Faculty of Forestry, University of Zagreb, Zagreb, pp 13–34

    Google Scholar 

  • Greilhuber J (1998) Intraspecific variation in genome size: a critical reassessment. Ann Bot (Oxford) 82(Suppl. A):27–35

    Article  Google Scholar 

  • Greilhuber J (2005) Intraspecific variation in genome size in angiosperms: identifying its existence. Ann Bot (Oxford) 95:91–98

    Article  CAS  Google Scholar 

  • Greilhuber J, Ebert I (1994) Genome size variation in Pisum sativum. Genome 37:646–655

    Article  PubMed  CAS  Google Scholar 

  • Greilhuber J, Obermayer R (1997) Genome size and maturity group in Glycine max (soybean). Heredity 78:547–551

    Article  Google Scholar 

  • Greilhuber J, Obermayer R (1998) Genome size variation in Cajanus cajan (Fabaceae): a reconsideration. Pl Syst Evol 212:135–141

    Article  Google Scholar 

  • Gupta PK, Rees H (1975) Tolerance of Lolium hybrids to quantitative variation in nuclear DNA. Nature 257:587–588

    Article  PubMed  CAS  Google Scholar 

  • Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252–1261

    Article  PubMed  CAS  Google Scholar 

  • Jenkins G, Rees H (1983) Synaptonemal complex formation in a Festuca hybrid. In Brandham PE, Bennett MD (eds) Kew chromosome conference, Vol 2. Allen & Unwin, London, pp 233–242

    Google Scholar 

  • Jones RN, Rees H (1982) B chromosomes. Academic Press, New York

    Google Scholar 

  • Kirschner J, Štěpánek J (1993) The genus Taraxacum in the Caucasus. 1, Introduction. 2, The section Porphyrantha. Folia Geobot Phytotax 28:295–320

    Google Scholar 

  • Kirschner J, Štěpánek J (1996) Modes of speciation and evolution of sections in Taraxacum. Folia Geobot Phytotax 31:415–426

    Article  Google Scholar 

  • Kirschner J, Štěpánek J (1998) A revision of Taraxacum sect. Piesis (Compositae). Folia Geobot 33:391–414

    Article  Google Scholar 

  • Kirschner J, Štěpánek J, Tichý M, Krahulcová A, Kirschnerová L, Pellar L (1994) Variation in Taraxacum bessarabicum and allied taxa of the section Piesis (Compositae): Allozyme diversity, karyotypes and breeding behaviour. Folia Geobot Phytotax 29:61–83

    Article  Google Scholar 

  • Michaelson MJ, Price HJ, Ellison JR, Johnston JS (1991) Comparison of plant DNA contents determined by Feulgen microspectrophotometry and laser flow cytometry. Amer J Bot 78:183–188

    Article  CAS  Google Scholar 

  • Morgan-Richards M, Trewick SA, Chapman HM, Krahulcová A (2004) Interspecific hybridization among Hieracium species in New Zealand: evidence from flow cytometry. Heredity 93:34–42

    Article  PubMed  CAS  Google Scholar 

  • Neumann P, Koblížková A, Navrátilová A, Macas J (2006) Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics 173:1047–1056

    Article  PubMed  CAS  Google Scholar 

  • Noirot M, Barre P, Louarn C, Duperray C, Hamon S (2000) Nucleus–cytosol interactions – a source of stochimetric error in flow cytometric estimation of nuclear DNA content in plant. Ann Bot (Oxford) 86:309–316

    Article  CAS  Google Scholar 

  • Noirot M, Barre P, Duperray C, Hamon S, De Kochko A (2005) Investigation on the causes of stochiometric error in genome size estimation using heat experiments: consequences on data interpretation. Ann Bot (Oxford) 95:111–118

    Article  CAS  Google Scholar 

  • Obermayer R, Greilhuber J (1999) Genome size in Chinese soybean accessions – stable or variable? Ann Bot (Oxford) 84:259–262

    Article  Google Scholar 

  • Obermayer R, Greilhuber J (2005) Does genome size in Dasypyrum villosum vary with fruit colour? Heredity 95:91–95

    Article  PubMed  CAS  Google Scholar 

  • Ohri D (1998) Genome size variation and plant systematics. Ann Bot (Oxford) 82(Suppl. A):75–83

    Article  Google Scholar 

  • Pečinka A, Suchánková P, Lysák MA, Trávníček B, Doležel J (2006) Nuclear DNA content variation among central European Koeleria taxa. Ann Bot (Oxford) 98:117–122

    Article  Google Scholar 

  • Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O (2006) Doubling genome size without polyploidization: Dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269

    Article  PubMed  CAS  Google Scholar 

  • Poggio L, Rosato M, Chiavarino AM, Naranjo CA (1998) Genome size and environmental correlations in maize (Zea mays ssp. mays, Poaceae). Ann Bot (Oxford) 82(Suppl. A):107–115

    Article  Google Scholar 

  • Porter HL, Rayburn AL (1990) B-chromosome and C-band heterochromatin variation in Arizona maize population adapted no different altitude. Genome 33:659–662

    Article  Google Scholar 

  • Price HJ, Hodnett G, Johnston JS (2000) Sunflower (Helianthus annuus) leaves contain compounds that reduce nuclear propidium iodide fluorescence. Ann Bot (Oxford) 86:929–934

    Article  CAS  Google Scholar 

  • Rosato M, Chiavarino AM, Naranjo CA, Camara Hernandez J, Poggio L (1998) Genome size and numerical polymorphism for the B chromosome in races of Maize (Zea mays ssp. mays, Poaceae). Amer J Bot 85:168–174

    Article  CAS  Google Scholar 

  • Roux N, Toloza A, Radecki Z, Zapata-Arias FJ, Doležel J (2003) Rapid detection of aneuploidy in Musa using flow cytometry. Pl Cell Rep 21:483–490

    CAS  Google Scholar 

  • SanMiguel P, Bennetzen JL (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot (Oxford) 82:37–44

    Article  CAS  Google Scholar 

  • Šmarda P, Bureš P (2006) Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels. Ann Bot (Oxford) 98:665–678

    Article  Google Scholar 

  • Šmarda P, Bureš P (2010) Understanding intraspecific variation in genome size in plants. Preslia 82:41–61

    Google Scholar 

  • Šmarda P, Bureš P, Horová L, Rotreklová O (2008) Intrapopulation genome size dynamics in Festuca pallens and the early stages of genome size evolution in plants. Ann Bot (Oxford) 102:599–607

    Article  Google Scholar 

  • Suda J, Krahulcová A, Trávníček P, Rosenbaumová R, Peckert T, Krahulec F (2007a) Genome size variation and species relationships in Hieracium sub-genus Pilosella (Asteraceae) as inferred by flow cytometry. Ann Bot (Oxford) 100:1323–1335

    Article  Google Scholar 

  • Suda J, Weiss-Schneeweiss H, Tribsch A, Schneeweiss GM, Trávníček P, Schönswetter P (2007b) Complex distribution patterns of di-, tetra- and hexaploid cytotypes in the European high mountain plant Senecio carniolicus (Asteraceae). Amer J Bot 94:1391–1401

    Article  Google Scholar 

  • Temsch EM, Greilhuber J (2000) Genome size variation in Arachis hypogaea and A. monticola re-evaluated. Genome 43:449–451

    PubMed  CAS  Google Scholar 

  • Vicient CM, Suoniemi A, Anamthawat-Jonsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Pl Cell 11:1769–1784

    CAS  Google Scholar 

  • Walker DJ, Monino I, Correal E (2006) Genome size in Bituminaria bituminosa (L.) C. H. Stirton (Fabaceae) populations: separation of “true” differences from environmental effects on DNA determination. Environm Exp Bot 55:258–265

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank George Nakhutsrishvili, Otar Abdaladze and other staff of the Institute of Botany of the Georgian Academy of Science, who were instrumental to the success of the expedition, and Eva Ibermajerová who helped with plant cultivation. This project was financially supported by the Czech Science Foundation (206/05/0970) and partly by the Research Plan of the Institute of Botany, Academy of Sciences of the Czech Republic (AV0Z60050516), the Research Plan of the Faculty of Science, Charles University in Prague (MSM 0021620828) and another grant from the Czech Science Foundation (206/08/H049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Trávníček.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trávníček, P., Kirschner, J., Chudáčková, H. et al. Substantial Genome Size Variation in Taraxacum stenocephalum (Asteraceae, Lactuceae). Folia Geobot 48, 271–284 (2013). https://doi.org/10.1007/s12224-013-9151-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-013-9151-7

Keywords

Navigation