Metataxonomic analysis of microbiota from Pakistani dromedary camelids milk and characterization of a newly isolated Lactobacillus fermentum strain with probiotic and bio-yogurt starter traits

Abstract

This study was undertaken to investigate the starter and probiotic potential of lactic acid bacteria isolated from dromedarian camel’s milk using both culture-dependent and -independent approaches and metataxonomic analysis. Strains of lactic acid bacteria recovered were examined in vitro for tolerance to gastric acidity, bile, and lysozyme. Bile salt hydrolysis, serum cholesterol-lowering, oxalate degradation, proteolytic activity, exopolysaccharide production, and cell surface characteristics necessary for colonizing intestinal mucosa were also evaluated. A single strain of the species, Lactobacillus fermentum named NPL280, was selected through multivariate analysis as it harbored potential probiotic advantages and fulfilled safety criteria. The strain assimilated cholesterol, degraded oxalate, produced exopolysaccharides, and proved to be a proficient alternate yogurt starter with good viability in stored bio-yogurt. A sensorial analysis of the prepared bio-yogurt was also found to be exemplary. We conclude that the indigenous L. fermentum strain NPL280 has the desired traits of a starter and adjunct probiotic culture for dairy products.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Abdulla AA, Abed TA, Saeed A (2014) Adhesion, autoaggregation and hydrophobicity of six Lactobacillus strains. Br Microbiol Res J 4:381–391. https://doi.org/10.9734/BMRJ/2014/6462

    Article  Google Scholar 

  2. Abouloifa H et al (2019) Characterization of probiotic properties of antifungal Lactobacillus strains isolated from traditional fermenting green olives. Probiotics Antimicrob Proteins 12:683–696. https://doi.org/10.1007/s12602-019-09543-8

    CAS  Article  Google Scholar 

  3. Abushelaibi A, Al-Mahadin S, El-Tarabily K, Shah NP, Ayyash M (2017) Characterization of potential probiotic lactic acid bacteria isolated from camel milk. LWT Food Sci Technol 79:316–325. https://doi.org/10.1016/j.lwt.2017.01.041

    CAS  Article  Google Scholar 

  4. Akabanda F, Owusu-Kwarteng J, Tano-Debrah K, Parkouda C, Jespersen L (2014) The use of lactic acid bacteria starter culture in the production of Nunu, a spontaneously fermented milk product in Ghana. Intl J Food Sci 2014:11. https://doi.org/10.1155/2014/721067

    Article  Google Scholar 

  5. Alaoui Ismaili M, Saidi B, Zahar M, Hamama A, Ezzaier R (2019) Composition and microbial quality of raw camel milk produced in Morocco. J Saudi Soc Agric Sci 18:17–21. https://doi.org/10.1016/j.jssas.2016.12.001

    Article  Google Scholar 

  6. Amrouche T, Mounier J, Pawtowski A, Thomas F, Picot A (2020) Microbiota associated with dromedary camel milk from Algerian Sahara. Curr Microbiol 77:24–31. https://doi.org/10.1007/s00284-019-01788-4

    CAS  Article  PubMed  Google Scholar 

  7. Anandharaj M, Sivasankari B, Santhanakaruppu R, Manimaran M, Rani RP, Sivakumar S (2015) Determining the probiotic potential of cholesterol-reducing Lactobacillus and Weissella strains isolated from gherkins (fermented cucumber) and south Indian fermented koozh. Res Microbiol 166:428–439. https://doi.org/10.1016/j.resmic.2015.03.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Angmo K, Kumari A, Bhalla TC (2016) Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh. LWT - Food Sci Technol 66:428–435. https://doi.org/10.1016/j.lwt.2015.10.057

    CAS  Article  Google Scholar 

  9. Anisimova E, Yarullina D (2018) Characterization of erythromycin and tetracycline resistance in Lactobacillus fermentum strains. Int J Med Microbiol 2018:9. https://doi.org/10.1155/2018/3912326

    CAS  Article  Google Scholar 

  10. Arena M et al (2015) Functional starters for functional yogurt Foods 4:15–33. https://doi.org/10.3390/foods4010015

    CAS  Article  PubMed  Google Scholar 

  11. Arslan S, Bayrakci S (2016) Physicochemical, functional, and sensory properties of yogurts containing persimmon. Turk J Agric For 40:68–74. https://doi.org/10.3906/tar-1406-150

    CAS  Article  Google Scholar 

  12. Asan-Ozusaglam M, Gunyakti A (2019) Lactobacillus fermentum strains from human breast milk with probiotic properties and cholesterol-lowering effects. Food Sci Biotechnol 28:501–509. https://doi.org/10.1007/s10068-018-0494-y

    CAS  Article  PubMed  Google Scholar 

  13. Ayyash M, Al-Nuaimi AK, Al-Mahadin S, Liu SQ (2018) In vitro investigation of anticancer and ACE-inhibiting activity, alpha-amylase and alpha-glucosidase inhibition, and antioxidant activity of camel milk fermented with camel milk probiotic: a comparative study with fermented bovine milk. Food Chem 239:588–597. https://doi.org/10.1016/j.foodchem.2017.06.149

    CAS  Article  PubMed  Google Scholar 

  14. Barbieri F, Montanari C, Gardini F, Tabanelli G (2019) Biogenic amine production by lactic acid bacteria: a review. Foods 8:17. https://doi.org/10.3390/foods8010017

    CAS  Article  PubMed Central  Google Scholar 

  15. Batista A et al (2017) Developing a synbiotic fermented milk using probiotic bacteria and organic green banana flour. J Funct Foods 38:242–250. https://doi.org/10.1016/j.jff.2017.09.037

    CAS  Article  Google Scholar 

  16. Belicová A, Mikulášová M, Dušinský R (2013) Probiotic potential and safety properties of Lactobacillus plantarum from Slovak Bryndza cheese. Biomed Res Int 2013:8. https://doi.org/10.1155/2013/760298

    CAS  Article  Google Scholar 

  17. Benkerroum N (2016) Biogenic amines in dairy products: origin, incidence, and control means. Compr Rev Food Sci Food Saf 15:801–826. https://doi.org/10.1111/1541-4337.12212

    Article  PubMed  Google Scholar 

  18. Benmechernene Z, Chentouf HF, Yahia B, Fatima G, Quintela-Baluja M, Calo-Mata P, Barros-Velázquez J (2013) Technological aptitude and applications of Leuconostoc mesenteroides bioactive strains isolated from Algerian raw camel milk. Biomed Res Int 2013:14. https://doi.org/10.1155/2013/418132

    Article  Google Scholar 

  19. Bubnov RV, Babenko LP, Lazarenko LM, Mokrozub VV, Spivak MY (2018) Specific properties of probiotic strains: relevance and benefits for the host. EPMA J 9:205–223. https://doi.org/10.1007/s13167-018-0132-z

    Article  PubMed  PubMed Central  Google Scholar 

  20. Câmara S, Dapkevicius A, Riquelme C, Elias R, Silva C, Malcata F, Dapkevicius M (2019) Potential of lactic acid bacteria from Pico cheese for starter culture development. Food Sci Technol Int 25:303–317. https://doi.org/10.1177/1082013218823129

    CAS  Article  PubMed  Google Scholar 

  21. Campedelli I et al (2019) Genus-wide assessment of antibiotic resistance in Lactobacillus spp. Appl Env Microbiol 85:e01738-e11718. https://doi.org/10.1128/AEM.01738-18

    CAS  Article  Google Scholar 

  22. Caporaso JG et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108:4516–4522. https://doi.org/10.1073/pnas.1000080107

    Article  Google Scholar 

  23. Caro I, Mateo J, Sandoval MH, Soto S, García-Armesto MR, Castro JM (2013) Characterization of Oaxaca raw milk cheese microbiota with particular interest in Lactobacillus strains. J Dairy Sci 96:3461–3470. https://doi.org/10.3168/jds.2012-6103

    CAS  Article  PubMed  Google Scholar 

  24. Casarotti SN, Carneiro BM, Todorov SD, Nero LA, Rahal P, Penna ALB (2017) In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese. Ann Microbiol 67:289–301. https://doi.org/10.1007/s13213-017-1258-2

    CAS  Article  Google Scholar 

  25. Chandan RC, Gandhi A, Shah NP (2017) Yogurt: historical background, health benefits, and global trade. In: Shah NP (ed) Yogurt in Health and Disease Prevention. Academic Press, pp 3–29. https://doi.org/10.1016/B978-0-12-805134-4.00001-8

  26. Chatterjee M, Pushkaran AC, Vasudevan AK, Menon KKN, Biswas R, Mohan CG (2018) Understanding the adhesion mechanism of a mucin binding domain from Lactobacillus fermentum and its role in enteropathogen exclusion. Int J Biol Macromol 110:598–607. https://doi.org/10.1016/j.ijbiomac.2017.10.107

    CAS  Article  PubMed  Google Scholar 

  27. Chen KH, Ki M, Sugihara H, Araki Y, Yamamoto G, Hattori T (2007) High animal-fat intake changes the bile-acid composition of bile juice and enhances the development of Barrett’s esophagus and esophageal adenocarcinoma in a rat duodenal-contents reflux model. Cancer Sci 98:1683–1688. https://doi.org/10.1111/j.1349-7006.2007.00605.x

    CAS  Article  PubMed  Google Scholar 

  28. Chervinets Y, Chervinets V, Shenderov B, Belyaeva E, Troshin A, Lebedev S, Danilenko V (2018) Adaptation and probiotic potential of lactobacilli, isolated from the oral cavity and intestines of healthy people. Probiotics Antimicrob Proteins 10:22–33. https://doi.org/10.1007/s12602-017-9348-9

    CAS  Article  PubMed  Google Scholar 

  29. Cho WY, Hong GE, Lee HJ, Yeon SJ, Paik HD, Hosaka YZ, Lee CH (2020) Effect of yogurt fermented by Lactobacillus Fermentum TSI and L. Fermentum S2 derived from a Mongolian traditional dairy product on rats with high-fat-diet-induced obesity. Foods 9:12. https://doi.org/10.3390/foods9050594

  30. Cliff M, Fan L, Sanford K, Stanich K, Doucette C, Raymond N (2013) Descriptive analysis and early-stage consumer acceptance of yogurts fermented with carrot juice. J Dairy Sci 96:4160–4172. https://doi.org/10.3168/jds.2012-6287

    CAS  Article  PubMed  Google Scholar 

  31. Cornick S, Tawiah A, Chadee K (2015) Roles and regulation of the mucus barrier in the gut. Tissue barriers 3:e982426. https://doi.org/10.4161/21688370.2014.982426

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Dąbrowska A, Babij K, Szołtysik M, Chrzanowska J (2017) Viability and growth promotion of starter and probiotic bacteria in yogurt supplemented with whey protein hydrolysate during refrigerated storage. Adv Hygiene Exp Med 71:952–959. https://doi.org/10.5604/01.3001.0010.5866

    Article  Google Scholar 

  33. Das K, Choudhary R, Thompson-Witrick KA (2019) Effects of new technology on the current manufacturing process of yogurt-to increase the overall marketability of yogurt. LWT Food Sci Technol 108:69–80. https://doi.org/10.1016/j.lwt.2019.03.058

    CAS  Article  Google Scholar 

  34. de Melo Pereira GV, de Oliveira CB, Júnior AIM, Thomaz-Soccol V, Soccol CR (2018) How to select a probiotic? A review and update of methods and criteria. Biotechnol Adv 36:2060–2076. https://doi.org/10.1016/j.biotechadv.2018.09.003

    Article  PubMed  Google Scholar 

  35. de Moraes GMD et al (2017) Functional properties of Lactobacillus mucosae strains isolated from Brazilian goat milk. Probiotics Antimicrob Proteins 9:235–245. https://doi.org/10.1007/s12602-016-9244-8

    CAS  Article  PubMed  Google Scholar 

  36. de Souza BMS, Borgonovi TF, Casarotti SN, Todorov SD, Penna ALB (2019) Lactobacillus casei and Lactobacillus fermentum strains isolated from mozzarella cheese: probiotic potential, safety, acidifying kinetic parameters and viability under gastrointestinal tract conditions. Probiotics Antimicrob Proteins 11:382–396. https://doi.org/10.1007/s12602-018-9406-y

    CAS  Article  PubMed  Google Scholar 

  37. Delgado S, Leite AM, Ruas-Madiedo P, Mayo B (2015) Probiotic and technological properties of Lactobacillus spp. strains from the human stomach in the search for potential candidates against gastric microbial dysbiosis. Front Microbiol 5:8. https://doi.org/10.3389/fmicb.2014.00766

  38. Dinu V et al (2020) The antibiotic vancomycin induces complexation and aggregation of gastrointestinal and submaxillary mucins. Sci Rep 10:12. https://doi.org/10.1038/s41598-020-57776-3

    CAS  Article  Google Scholar 

  39. dos Santos KMO et al (2015) Artisanal Coalho cheeses as source of beneficial Lactobacillus plantarum and Lactobacillus rhamnosus strains. Dairy Sci Technol 95:209–230. https://doi.org/10.1007/s13594-014-0201-6

    CAS  Article  Google Scholar 

  40. Elbanna K, El Hadad S, Assaeedi A, Aldahlawi A, Khider M, Alhebshi A (2018) In vitro and in vivo evidences for innate immune stimulators lactic acid bacterial starters isolated from fermented camel dairy products. Sci Rep 8:12553. https://doi.org/10.1038/s41598-018-31006-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Endo A et al (2018) In vitro and in silico characterisation of Lactobacillus paraplantarum D2–1, a starter culture for soymilk fermentation. Int J Food Sci Nutr 69:857–869. https://doi.org/10.1080/09637486.2017.1422701

    CAS  Article  PubMed  Google Scholar 

  42. FAO-WHO, (2006) Probiotics in food: health and nutritional properties and guidelines for evaluation, vol 85. UN, Rome, Italy

    Google Scholar 

  43. FAO-WHO (2011) Milk & milk products. In: Codex Alimentarius. 2nd edn. United Nations, Rome, p 248

  44. Faraz A, Mustafa MI, Lateef M, Yaqoob M, Younas M (2013) Production potential of camel and its prospects in Pakistan. Punjab Univ J Zool 28:89–95. 0079–8045/13/0089–0095

  45. FEEDAP (2012) Guidance on studies concerning the safety of use of the additive for users/workers. EFSA J 10:1–5. https://doi.org/10.2903/j.efsa.2012.2539

    Article  Google Scholar 

  46. Ferreira AB et al (2013) Increased expression of clp genes in Lactobacillus delbrueckii UFV H2b20 exposed to acid stress and bile salts. Benef Microbes 4:367–374. https://doi.org/10.3920/BM2013.0022

    CAS  Article  PubMed  Google Scholar 

  47. Fguiri I, Ziadi M, Rekaya K, Samira A, Khorchani T (2017) Isolation and characterization of lactic acid bacteria strains from raw camel milk for potential use in the production of yogurt. J Food Sci Nutr 3:8. https://doi.org/10.24966/FSN-1076/100026

  48. Folkenberg DM, Dejmek P, Skriver A, Ipsen R (2005) Relation between sensory texture properties and exopolysaccharide distribution in set and in stirred yoghurts produced with different starter cultures. J Texture Stud 36:174–189. https://doi.org/10.1111/j.1745-4603.2005.00010.x

    Article  Google Scholar 

  49. Ganda EK et al (2016) Longitudinal metagenomic profiling of bovine milk to assess the impact of intramammary treatment using a third-generation cephalosporin. Sci Rep 6:13. https://doi.org/10.1038/srep37565

    CAS  Article  Google Scholar 

  50. Gayer CP, Basson MD (2009) The effects of mechanical forces on intestinal physiology and pathology. Cell Signal 21:1237–1244. https://doi.org/10.1016/j.cellsig.2009.02.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Georgieva R et al (2015) Antimicrobial activity and antibiotic susceptibility of Lactobacillus and Bifidobacterium spp. intended for use as starter and probiotic cultures. Biotechnol Equip 29:84–91. https://doi.org/10.1080/13102818.2014.987450

    CAS  Article  Google Scholar 

  52. Gomathi S, Sasikumar P, Anbazhagan K, Sasikumar S, Kavitha M, Selvi M, Selvam GS (2014) Screening of indigenous oxalate degrading lactic acid bacteria from human faeces and South Indian fermented foods: assessment of probiotic potential. Sci World J 2014:11. https://doi.org/10.1155/2014/648059

    CAS  Article  Google Scholar 

  53. Gomes A et al (2011) Effect of the inoculation level of Lactobacillus acidophilus in probiotic cheese on the physicochemical features and sensory performance compared with commercial cheeses. J Dairy Sci 94:4777–4786. https://doi.org/10.3168/jds.2011-4175

    CAS  Article  PubMed  Google Scholar 

  54. Granato D, Branco GF, Cruz AG, Faria JdAF, Shah NP (2010) Probiotic dairy products as functional foods. Compr Rev Food Sci Food Saf 9:455–470. https://doi.org/10.1111/j.1541-4337.2010.00120.x

    CAS  Article  PubMed  Google Scholar 

  55. Gueimonde M, Sánchez B, de los Reyes-Gavilán CG, Margolles A, (2013) Antibiotic resistance in probiotic bacteria. Front Microbiol 4:202. https://doi.org/10.3389/fmicb.2013.00202

    Article  PubMed  PubMed Central  Google Scholar 

  56. Guglielmotti D, Marcó MB, Vinderola C, de los Reyes Gavilán C, Reinheimer J, Quiberoni A, (2007) Spontaneous Lactobacillus delbrueckii phage-resistant mutants with acquired bile tolerance. Int J Food Microbiol 119:236–242. https://doi.org/10.1016/j.ijfoodmicro.2007.08.010

    CAS  Article  PubMed  Google Scholar 

  57. Hamed E, Elattar A (2013) Identification and some probiotic potential of lactic acid bacteria isolated from Egyptian camels milk. Life Sci J 10:1952–1961

    Google Scholar 

  58. Heo S, Lee JH, Jeong DW (2020) Food-derived coagulase-negative Staphylococcus as starter cultures for fermented foods. Food Sci Biotechnol 29:1023–1035. https://doi.org/10.1007/s10068-020-00789-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Ibrahem SA, El Zubeir IE (2016) Processing, composition and sensory characteristic of yoghurt made from camel milk and camel–sheep milk mixtures. Small Rumin Res 136:109–112. https://doi.org/10.1016/j.smallrumres.2016.01.014

    Article  Google Scholar 

  60. Illeghems K, De Vuyst L, Weckx S (2015) Comparative genome analysis of the candidate functional starter culture strains Lactobacillus fermentum 222 and Lactobacillus plantarum 80 for controlled cocoa bean fermentation processes. BMC Genomics 16:13. https://doi.org/10.1186/s12864-015-1927-0

    CAS  Article  Google Scholar 

  61. Jans C, Bugnard J, Njage PMK, Lacroix C, Meile L (2012) Lactic acid bacteria diversity of African raw and fermented camel milk products reveals a highly competitive, potentially health-threatening predominant microflora. LWT Food Sci Technol 47:371–379. https://doi.org/10.1016/j.lwt.2012.01.034

    CAS  Article  Google Scholar 

  62. Jose N, Bunt C, Hussain M (2015) Comparison of microbiological and probiotic characteristics of lactobacilli isolates from dairy food products and animal rumen contents. Microorganisms 3:198–212. https://doi.org/10.3390/microorganisms3020198

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Kakde S, Bhopal RS, Bhardwaj S, Misra A (2017) Urbanized South Asians’ susceptibility to coronary heart disease: the high-heat food preparation hypothesis. Nutrition 33:216–224. https://doi.org/10.1016/j.nut.2016.07.006

    Article  PubMed  Google Scholar 

  64. Kotzamanidis C, Kourelis A, Litopoulou-Tzanetaki E, Tzanetakis N, Yiangou M (2010) Evaluation of adhesion capacity, cell surface traits and immunomodulatory activity of presumptive probiotic Lactobacillus strains. Int J Food Microbiol 140:154–163. https://doi.org/10.1016/j.ijfoodmicro.2010.04.004

    CAS  Article  PubMed  Google Scholar 

  65. Kumar D (2016) Camel milk: alternative milk for human consumption and its health benefits. Nutr Food Sci 46:217–227. https://doi.org/10.1108/NFS-07-2015-0085

    Article  Google Scholar 

  66. Kumar M et al (2012) Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. J Diabetes Res 2012:15. https://doi.org/10.1155/2012/902917

    CAS  Article  Google Scholar 

  67. Lee KK, Yii KC (1996) A comparison of three methods for assaying hydrophobicity of pathogenic vibrios. Lett Appl Microbiol 23:343–346. https://doi.org/10.1111/j.1472-765X.1996.tb00204.x

    CAS  Article  Google Scholar 

  68. Leite AM, Miguel M, Peixoto R, Ruas-Madiedo P, Paschoalin V, Mayo B, Delgado S (2015) Probiotic potential of selected lactic acid bacteria strains isolated from Brazilian kefir grains. J Dairy Sci 98:3622–3632. https://doi.org/10.3168/jds.2014-9265

    CAS  Article  PubMed  Google Scholar 

  69. Luckow T, Sheehan V, Fitzgerald G, Delahunty C (2006) Exposure, health information and flavour-masking strategies for improving the sensory quality of probiotic juice. Appetite 47:315–323. https://doi.org/10.1016/j.appet.2006.04.006

    CAS  Article  PubMed  Google Scholar 

  70. Mabood F et al (2017) Development of new NIR-spectroscopy method combined with multivariate analysis for detection of adulteration in camel milk with goat milk. Food Chem 221:746–750. https://doi.org/10.1016/j.foodchem.2016.11.109

    CAS  Article  PubMed  Google Scholar 

  71. Mani-López E, Palou E, López-Malo A (2014) Probiotic viability and storage stability of yogurts and fermented milks prepared with several mixtures of lactic acid bacteria. J Dairy Sci 97:2578–2590. https://doi.org/10.3168/jds.2013-7551

    CAS  Article  PubMed  Google Scholar 

  72. Masiello S, Martin N, Watters R, Galton D, Schukken Y, Wiedmann M, Boor K (2014) Identification of dairy farm management practices associated with the presence of psychrotolerant sporeformers in bulk tank milk. J Dairy Sci 97:4083–4096. https://doi.org/10.3168/jds.2014-7938

    CAS  Article  PubMed  Google Scholar 

  73. Meli F, Lazzi C, Neviani E, Gatti M (2014) Effect of protein hydrolysates on growth kinetics and aminopeptidase activities of Lactobacillus. Curr Microbiol 68:82–87. https://doi.org/10.1007/s00284-013-0445-z

    CAS  Article  PubMed  Google Scholar 

  74. Miremadi F, Ayyash M, Sherkat F, Stojanovska L (2014) Cholesterol reduction mechanisms and fatty acid composition of cellular membranes of probiotic Lactobacilli and Bifidobacteria. J Funct Foods 9:295–305. https://doi.org/10.1016/j.jff.2014.05.002

    CAS  Article  Google Scholar 

  75. Moeller R, Horneck G, Rettberg P, Mollenkopf H-J, Stackebrandt E, Nicholson W (2006) A method for extracting RNA from dormant and germinating Bacillus subtilis strain 168 endospores. Curr Microbiol 53:227–231. https://doi.org/10.1007/s00284-006-0099-1

    CAS  Article  PubMed  Google Scholar 

  76. Mu Q, Tavella VJ, Luo XM (2018) Role of Lactobacillus reuteri in human health and diseases. Front Microbiol 9:17. https://doi.org/10.3389/fmicb.2018.00757

    Article  Google Scholar 

  77. Murphy C et al (2009) Metabolic activity of probiotics—oxalate degradation. Vet Microbiol 136:100–107. https://doi.org/10.1016/j.vetmic.2008.10.005

    CAS  Article  PubMed  Google Scholar 

  78. Naghmouchi K, Belguesmia Y, Bendali F, Spano G, Seal BS, Drider D (2019) Lactobacillus fermentum: a bacterial species with potential for food preservation and biomedical applications. Crit Rev Food Sci Nutr 60:3387–3399. https://doi.org/10.1080/10408398.2019.1688250

    CAS  Article  PubMed  Google Scholar 

  79. Nagy P, Fábri ZN, Varga L, Reiczigel J, Juhász J (2017) Effect of genetic and nongenetic factors on chemical composition of individual milk samples from dromedary camels (Camelus dromedarius) under intensive management. J Dairy Sci 100:8680–8693. https://doi.org/10.3168/jds.2017-12814

    CAS  Article  PubMed  Google Scholar 

  80. Nielsen CLM, Hornbaek T, Rasmussen P, Poulsen L (2018) Lactobacillus fermentum bacteria reducing the concentration of acetaldehyde

  81. Owusu-Kwarteng J, Tano-Debrah K, Akabanda F, Jespersen L (2015) Technological properties and probiotic potential of Lactobacillus fermentum strains isolated from West African fermented millet dough. BMC Microbiol 15:10. https://doi.org/10.1186/s12866-015-0602-6

    CAS  Article  Google Scholar 

  82. Panicker AS, Ali SA, Anand S, Panjagari NR, Kumar S, Mohanty A, Behare PV (2018) Evaluation of some in vitro probiotic properties of Lactobacillus fermentum strains. J Food Sci Technol 55:2801–2807. https://doi.org/10.1007/s13197-018-3197-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Pessione E, Cirrincione S (2016) Bioactive molecules released in food by lactic acid bacteria: Encrypted peptides and biogenic amines. Front Microbiol 7:19. https://doi.org/10.3389/fmicb.2016.00876

    Article  Google Scholar 

  84. Pisano MB, Viale S, Conti S, Fadda ME, Deplano M, Melis MP, Deiana M, Cosentino S (2014) Preliminary evaluation of probiotic properties of Lactobacillus strains isolated from Sardinian dairy products. BioMed Res Int 2014. https://doi.org/10.1155/2014/286390

  85. Pradhan D, Mallappa RH, Grover S (2020) Comprehensive approaches for assessing the safety of probiotic bacteria. Food Control 108:106872. https://doi.org/10.1016/j.foodcont.2019.106872

    CAS  Article  Google Scholar 

  86. Rajab S, Tabandeh F, Shahraky MK, Alahyaribeik S (2020) The effect of Lactobacillus cell size on its probiotic characteristics. Anaerobe 62:102103. https://doi.org/10.1016/j.anaerobe.2019.102103

    CAS  Article  PubMed  Google Scholar 

  87. Razmgah N, Mojgani N, Torshizi M (2016) Probiotic potential and virulence traits of Bacillus and Lactobacillus species isolated from local honey sample in Iran. IOSR J Pharm Biol Sci 11:87–95. https://doi.org/10.9790/3008-1105048795

    Article  Google Scholar 

  88. Ren D et al (2014) In vitro evaluation of the probiotic and functional potential of Lactobacillus strains isolated from fermented food and human intestine. Anaerobe 30:1–10. https://doi.org/10.1016/j.anaerobe.2014.07.004

    CAS  Article  PubMed  Google Scholar 

  89. Ru X, Zhang CC, Yuan YH, Yue TL, Guo CF (2019) Bile salt hydrolase activity is present in nonintestinal lactic acid bacteria at an intermediate level. Appl Microbiol Biotechnol 103:893–902. https://doi.org/10.1007/s00253-018-9492-5

    CAS  Article  PubMed  Google Scholar 

  90. Rutella GS, Tagliazucchi D, Solieri L (2016) Survival and bioactivities of selected probiotic lactobacilli in yogurt fermentation and cold storage: new insights for developing a bi-functional dairy food. Food Microbiol 60:54–61. https://doi.org/10.1016/j.fm.2016.06.017

    CAS  Article  PubMed  Google Scholar 

  91. Sah B, Vasiljevic T, McKechnie S, Donkor O (2014) Effect of probiotics on antioxidant and antimutagenic activities of crude peptide extract from yogurt. Food Chem 156:264–270. https://doi.org/10.1016/j.foodchem.2014.01.105

    CAS  Article  PubMed  Google Scholar 

  92. Saikia D et al (2018) Hypocholesterolemic activity of indigenous probiotic isolate Saccharomyces cerevisiae ARDMC1 in a rat model. J Food Drug Anal 26:154–162. https://doi.org/10.1016/j.jfda.2016.12.017

    CAS  Article  PubMed  Google Scholar 

  93. Salas-Jara MJ, Ilabaca A, Vega M, García A (2016) Biofilm forming Lactobacillus: new challenges for the development of probiotics. Microorganisms 4. https://doi.org/10.3390/microorganisms4030035

  94. Sanz T, Salvador A, Jimenez A, Fiszman S (2008) Yogurt enrichment with functional asparagus fibre. Effect of fibre extraction method on rheological properties, colour, and sensory acceptance. Eur Food Res Technol 227:1515–1521. https://doi.org/10.1007/s00217-008-0874-2

    CAS  Article  Google Scholar 

  95. Senok AC, Ismaeel AY, Botta GA (2005) Probiotics: facts and myths. Clin Microbiol Inf 11:958–966. https://doi.org/10.1111/j.1469-0691.2005.01228.x

    CAS  Article  Google Scholar 

  96. Shah NP (2007) Functional cultures and health benefits. Int Dairy J 17:1262–1277. https://doi.org/10.1016/j.idairyj.2007.01.014

    Article  Google Scholar 

  97. Shakerian M, Razavi SH, Ziai SA, Khodaiyan F, Yarmand MS, Moayedi A (2015) Proteolytic and ACE-inhibitory activities of probiotic yogurt containing non-viable bacteria as affected by different levels of fat, inulin and starter culture. J Food Sci Technol 52:2428–2433. https://doi.org/10.1007/s13197-013-1202-9

    CAS  Article  PubMed  Google Scholar 

  98. Sharma P, Tomar SK, Sangwan V, Goswami P, Singh R (2016) Antibiotic resistance of Lactobacillus sp. isolated from commercial probiotic preparations. J Food Saf 36:38–51. https://doi.org/10.1111/jfs.12211

    CAS  Article  Google Scholar 

  99. Shokryazdan P, Jahromi M, Liang J, Sieo C, Kalavathy R, Idrus Z, Ho Y (2017) In vitro assessment of bioactivities of Lactobacillus strains as potential probiotics for humans and chickens. J Food Sci 82:2734–2745. https://doi.org/10.1111/1750-3841.13921

    CAS  Article  PubMed  Google Scholar 

  100. Shokryazdan P, Sieo CC, Kalavathy R, Liang JB, Alitheen NB, Faseleh Jahromi M, Ho YW (2014) Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. Biomed Res Int 2014:17. https://doi.org/10.1155/2014/927268

    CAS  Article  Google Scholar 

  101. Shori AB (2017) Camel milk and its fermented products as a source of potential probiotic strains and novel food cultures: a mini review. PharmaNutrition 5:84–88. https://doi.org/10.1016/j.phanu.2017.06.003

    Article  Google Scholar 

  102. Silva FA et al (2017) The effect of Isabel grape addition on the physicochemical, microbiological and sensory characteristics of probiotic goat milk yogurt. Food Funct 8:2121–2132. https://doi.org/10.1039/C6FO01795A

    CAS  Article  PubMed  Google Scholar 

  103. Singh V, Arora V, Alam MJ, Garey KW (2012) Inhibition of biofilm formation by esomeprazole in Pseudomonas aeruginosa and Staphylococcus aureus. Antimicrob Agents Chemother 56:4360–4364. https://doi.org/10.1128/AAC.00544-12

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. Sönmez Ş, Önal Darilmaz D, Beyatli Y (2018) Determination of the relationship between oxalate degradation and exopolysaccharide production by different Lactobacillus probiotic strains. Int J Dairy Technol 71:741–752. https://doi.org/10.1111/1471-0307.12513

    CAS  Article  Google Scholar 

  105. Srinivasan R, Kesavelu D, Veligandla K, Muni S, Mehta S (2018) Lactobacillus reuteri DSM 17938: review of evidence in functional gastrointestinal disorders. Pediatr Ther 8:2161–2665

    Article  Google Scholar 

  106. Sybesma W, Kort R, Lee YK (2015) Locally sourced probiotics, the next opportunity for developing countries? Trends Biotechnol 33:197–200. https://doi.org/10.1016/j.tibtech.2015.01.002

    CAS  Article  PubMed  Google Scholar 

  107. Takahashi S, Tomita J, Nishioka K, Hisada T, Nishijima M (2014) Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS ONE 9. https://doi.org/10.1371/journal.pone.0105592

  108. Terpou A, Papadaki A, Lappa IK, Kachrimanidou V, Bosnea LA, Kopsahelis N (2019) Probiotics in food systems: significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients 11:32. https://doi.org/10.3390/nu11071591

    CAS  Article  Google Scholar 

  109. Turgut T, Cakmakci S (2018) Probiotic strawberry yogurts: microbiological, chemical and sensory properties. Probiotics Antimicrob Proteins 10:64–70. https://doi.org/10.1007/s12602-017-9278-6

    CAS  Article  PubMed  Google Scholar 

  110. Turpin W, Humblot C, Noordine ML, Thomas M, Guyot JP (2012) Lactobacillaceae and cell adhesion: Genomic and functional screening. PLoS ONE 7:e38034. https://doi.org/10.1371/journal.pone.0038034

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  111. Urdaneta V, Casadesús J (2017) Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts. Front Med 4. https://doi.org/10.3389/fmed.2017.00163

  112. Uriot O, Denis S, Junjua M, Roussel Y, Dary-Mourot A, Blanquet-Diot S (2017) Streptococcus thermophilus: from yogurt starter to a new promising probiotic candidate? J Funct Foods 37:74–89. https://doi.org/10.1016/j.jff.2017.07.038

    CAS  Article  Google Scholar 

  113. Yadav AN, Yadav N, Sachan SG, Saxena AK (2019) Biodiversity of psychrotrophic microbes and their biotechnological applications. J Appl Biol Biotechnol 7:99–108. https://doi.org/10.7324/JABB.2019.70415

    Article  Google Scholar 

  114. Yu J, Sun Z, Liu W, Bao Q, Zhang J, Zhang H (2012) Phylogenetic study of Lactobacillus acidophilus group, L. casei group and L. plantarum group based on partial hsp60, pheS and tuf gene sequences. Eur Food Res Technol 234:927–934. https://doi.org/10.1007/s00217-012-1712-0

    CAS  Article  Google Scholar 

  115. Zhao J, Fan H, Kwok LY, Guo F, Ji R, Ya M, Chen Y (2019) Analyses of physicochemical properties, bacterial microbiota, and lactic acid bacteria of fresh camel milk collected in Inner Mongolia. J Dairy Sci 103:106–116. https://doi.org/10.3168/jds.2019-17023

    CAS  Article  PubMed  Google Scholar 

  116. Ziane M, Couvert O, Le Chevalier P, Moussa-Boudjemaa B, Leguerinel I (2016) Identification and characterization of aerobic spore forming bacteria isolated from commercial camel’s milk in south of Algeria. Small Ruminant Res 137:59–64. https://doi.org/10.1016/j.smallrumres.2016.03.004

    Article  Google Scholar 

  117. Zielińska D, Kolożyn-Krajewska D (2018) Food-origin lactic acid bacteria may exhibit probiotic properties. Biomed Res Int 2018:16. https://doi.org/10.1155/2018/5063185

    CAS  Article  Google Scholar 

  118. Zielińska D, Rzepkowska A, Radawska A, Zieliński K (2015) In vitro screening of selected probiotic properties of Lactobacillus strains isolated from traditional fermented cabbage and cucumber. Curr Microbiol 70:183–194. https://doi.org/10.1007/s00284-014-0699-0

    CAS  Article  PubMed  Google Scholar 

  119. Zuo F et al (2016) Characterization and in vitro properties of potential probiotic Bifidobacterium strains isolated from breast-fed infant feces. Ann Microbiol 66:1027–1037. https://doi.org/10.1007/s13213-015-1187-x

    CAS  Article  Google Scholar 

Download references

Funding

This work was partially supported by an HEC, Pakistan’s TDF grant no.040 awarded to the corresponding author along with a Government of Pakistan’s PSDP grant, “Development of a National Probiotic Lab at NIBGE.” The corresponding author was its Project Director.

Author information

Affiliations

Authors

Contributions

Kanwal Aziz: investigation, formal analysis, writing the original draft. Zubair Farooq: investigation, resources. Arsalan Zaidi: conceptualization, methodology, resources, writing-review and editing, visualization, supervision, project administration, funding acquisition. Muhammad Tariq: validation, resources. Contributions of Kanwal Aziz and Arsalan Zaidi are equal.

Corresponding author

Correspondence to Arsalan Haseeb Zaidi.

Ethics declarations

Ethics approval and consent to participate

All procedures performed in studies involving human participants were per the institutional and national research committee’s ethical standards and the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the Institutional review committee (NIBGE). Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 198 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aziz, K., Farooq, Z., Tariq, M. et al. Metataxonomic analysis of microbiota from Pakistani dromedary camelids milk and characterization of a newly isolated Lactobacillus fermentum strain with probiotic and bio-yogurt starter traits. Folia Microbiol (2021). https://doi.org/10.1007/s12223-021-00855-3

Download citation