Exemplifying endophytes of banana (Musa paradisiaca) for their potential role in growth stimulation and management of Fusarium oxysporum f. sp cubense causing panama wilt

Abstract

In the present study, potentiality of endophytic microorganisms such as Rigidiporus vinctus AAU EF, Trichoderma reesei UH EF, and Sphingobacterium tabacisoli UH EB in the management of panama wilt and growth promotion of banana was assessed through artificial inoculation. During the study, a total of 220 bacterial and 110 fungal endophytes were isolated from root, pseudostem, and leaf samples of banana, and they were evaluated against Fusarium oxysporum f. sp cubense causing panama wilt. Out of total 330 bacterial and fungal endophytes, only five endophytes exhibited antagonism against Fusarium oxysporum f. sp cubense, out of which only three isolates, namely Trichoderma reesei UH EF, Rigidiporus vinctus AAU EF, and Sphingobacterium tabacisoli UH EB, produced indole acetic acid, siderophore, and hydrogen cyanide, except one bacterial strain Sphingobacterium tabacisoli UH EB which does not produce hydrogen cyanide. Furthermore, these three endophytes were identified through cultural and morphological characteristics as well as by the sequencing internal transcribed spacer (ITS) and 16S rRNA gene sequences analysis for bacteria, respectively. The response of host plant to endophyte inoculation was assessed by measuring the change in four growth parameters; plant height, pseudo stem girth (diameter), number of roots, and total number of leaves. The application of endophytes, irrespective of isolate and treatment type promoted the overall growth of the plant growth when compared with diseased plants with significant higher values recorded for all parameters assessed. The endophytes reported as growth promoters were found to have significant inhibition effect on Foc which can evidenced with lowest AUDPC values and epidemic rate at 99.09 units2 and 0.02 unit/day, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abraham A, Philip S, Jacob CK, Jayachandran K (2013) Novel bacterial endophytes from Hevea brasiliensis as biocontrol agent against Phytophthora leaf fall disease. Biocontrol 58(5):675–684. https://doi.org/10.1007/s10526-013-9516-0

    CAS  Article  Google Scholar 

  2. Alexander RM, Richard AS (2009) Biological control of Radopholus similis in banana by combined application of the mutualistic endophyte Fusarium oxysporum strain 162, the egg pathogen Paecilomyces lilacinus strain 251 and the antagonistic bacteria Bacillus firmus. Biocontrol 54:263–272

    Article  Google Scholar 

  3. Athira S, Anith KN (2020) Plant growth promotion and suppression of bacterial wilt incidence in tomato by rhizobacteria, bacterial endophytes and the root endophytic fungus Piriformospora indica. Indian Phytopathology. https://doi.org/10.1007/s42360-020-00283-2

    Article  Google Scholar 

  4. Arunachalam P, Kannan P, Prabukumar G, Govindaraj M (2013) Zinc deficiency in Indian soils with special focus to enrich zinc in peanut. Afric J Agric Res 8(50):6681–6688

    Google Scholar 

  5. Baker AW, Schipper B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biochem 17:451–457

    Article  Google Scholar 

  6. Berg G, Fritze A, Roskot N, Smalla K (2001) Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillium dahliae Kleb. J Appl Microbiol 91(6):963–971. https://doi.org/10.1046/j.1365-2672.2001.01462.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indole acetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57(2):535–538

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Cactano-Anolles G, Faueluken G, Beber WD (1993) Optimizations of surface sterilization for legume seed. Crop Sci 87:561–568

    Google Scholar 

  9. Cao L, Qiu Z, You J, Tan H, Zhou S (2005) Isolation and characterization of endophytic streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol Lett 247(2):147–152. https://doi.org/10.1016/j.femsle.2005.05.006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Cherif-Silini H, Silini A, Yahiaoui B, Ouzari I, Boudabous A (2016) Phylogenetic and plant-growth-promoting characteristics of Bacillus isolated from the wheat rhizosphere. Ann Microbiol 66:1087–1097. https://doi.org/10.1007/s13213-016-1194-6

    CAS  Article  Google Scholar 

  11. Conn VM, Franco CMM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl Environ Microbiol 70:1787–1794

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Costerousse B, Mauclaire LS, Frossard E, Thonar C (2018). Identification of heterotrophic zinc mobilization processes amongbacterial strains isolated from wheat rhizosphere (Triticum aestivum L.). Appl Environ Microbiol. https://doi.org/10.1128/AEM.01715-17

  13. Crump DH (1998) Biological control of potato and beet cyst nematodes. Asp Appl Bio 53:383–386

    Google Scholar 

  14. Damodaran T, Mishra VK, Jha SK, Gopal R, Rajan S, Ahmed I (2019) First report of Fusarium wilt in banana caused by Fusarium oxysporum f. sp. cubense tropical race 4 in India. Plant Dis 103(5):1022–1022. https://doi.org/10.1094/PDIS-07-18-1263-PDN

  15. Deka D, Jha DK (2020) Bioactivity assessment of endophytic fungi associated with Citrus macroptera Montr: an endangered ethno medicinal plant used in folk medicines in North-East India. Indian Phytopathol 73:21–33. https://doi.org/10.1007/s42360-019-00179-w

    Article  Google Scholar 

  16. Dita M, Barquero M, Heck D, Mizubuti ES, Staver CP (2018) Fusarium wilt of banana: current knowledge on epidemiology and research needs toward sustainable disease management. Front Plant Sci 9:1468. https://doi.org/10.3389/fpls.2018.01468

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dye DW (1962). The inadequacy of the usual determinative tests for the identification of Xanthomonas spp. New Zealand J Sci. 5(4).

  18. Edwards U, Rogall T, Bloecker H, Emde M, Boettger EC (1989) Isolation and direct complete nucleotide determination of entire genes characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7854

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Elad Y, David DR, Levi T, Kapat A, Kirshner B (1999). Trichoderma harzianum T-39- mechanisms of biocontrol of foliar pathogens. In: Modern fungicides and antifungal compounds. Lyr H, Russell PE, Dehne HW, Sisler HD (eds.) Andover, Hants, UK: Intercept, pp. 459–467.

  20. Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213(1):1–6. https://doi.org/10.1111/j.1574-6968.2002.tb11277.x

    CAS  Article  Google Scholar 

  21. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    PubMed  Google Scholar 

  22. Fishal EMM, Meon S, Yun WM (2010) Induction of tolerance to Fusarium wilt and defense-related mechanisms in the plantlets of susceptible berangan banana pre-inoculated with Pseudomonas sp.(UPMP3) and Burkholderia sp.(UPMB3). Agric Sci China, 9(8):1140–1149. https://doi.org/10.1016/S1671-2927(09)60201-7

  23. Ghosh SK, Banerjee S, Sengupta C (2017) Bioassay, characterization and estimation of siderophores from some important antagonistic Fungi. J of Biopesticides 10(2):105–112

    CAS  Google Scholar 

  24. Gopalakrishnan S, Hamuyan P, Kiran BK, Kannan IGK, Vidya MS, Deepthi K, Rupela O (2011) Evaluation of bacteria isolated from rice rhizosphere for biological control of charcoal rot sorghum caused by Macrophomia phaseolina (Tassi) Goid. World J Microbiol Biotech 72:1313–1321

    Article  CAS  Google Scholar 

  25. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Canadian journal of microbiology 43(10):895–914

    CAS  Article  Google Scholar 

  26. Hardoim PR, Hardoim CCP, van Overbeek LS, Elsas JD (2012) Dynamics of Seed-Borne Rice Endophytes on Early Plant Growth Stages. PloS One 7(2). https://doi.org/10.1371/journal.pone.0030438

  27. Horticultural Statistics at a Glance (2018) Ministry of Agriculture & Farmers Welfare. ICAR, New Delhi

    Google Scholar 

  28. Hartmann A, Schmid M, Tuinen DV, Berg G (2008) Plant-driven selection of microbes. Plant Soil 321:235–257. https://doi.org/10.1007/s11104-008-9814-y

    CAS  Article  Google Scholar 

  29. Hermanto C, Sutanto A, Daniells JW, Oneill WT, Sinohin VGO, Molina AB, Taylor P (2011) Incidence and Distribution of Fusarium Wilt Disease of Banana in Indonesia. Proceedings of the International ISHS-ProMusa Symposium on Global Perspectives on Asian Challenges held in Guangzhou, China, 14–18 September 2009. Van den Bergh I, Smith M and Swennen R (eds). Acta Hortic 897:313–322.

  30. Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637–657

    CAS  Article  Google Scholar 

  31. Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Jacobs MJ, Bugbee WM, Gabrielson DA (1985) Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Can J Microbiol 63:1262–1265

    Google Scholar 

  33. Jayaraman J, Parthasarathi T, Radhakrishnan NV (2007) Characterization of a Pseudomonas fluorescens strain from tomato rhizosphere and its use for integrated management of tomato damping-off. Biocontrol 52:683–702

    Article  Google Scholar 

  34. Kalam S, Das SN, Basu A, Podile AR (2017) Population densities of indigenous Acidobacteria change in the presence of plant growth promoting rhizobacteria (PGPR) in rhizosphere. J Basic Microbiol 57:376–385. https://doi.org/10.1002/jobm.201600588

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Kavino M, Manoranjitham SK (2018) In vitro bacterization of banana (Musa spp.) with native endophytic and rhizospheric bacterial isolates: novel ways to combat Fusarium wilt. Eur J. Plant Pathol. 151(2):371–387. https://doi.org/10.1007/s10658-017-1379-2

  36. Kavino M, Harish S, Kumar N, Saravanakumar D, Samiyappan R (2008) Induction of systemic resistance in banana (Musa spp.) against banana bunchy top virus (BBTV) by combining chitin with root-colonizing Pseudomonas fluorescens strain CHA0. Eur J Plant Pathol 120:353–362. https://doi.org/10.1007/s10658-007-9223-8

    CAS  Article  Google Scholar 

  37. Khamchatra N, Dixon KW, Tantiwiwat S, Piapukiew J (2016) Symbiotic seed germination of an endangered epiphytic slipper orchid, Paphiopedilum villosum (Lindl.) Stein. from Thailand. S Afr J Bot 104:76–81

    Article  Google Scholar 

  38. Khanghahi MY, Ricciuti P, Allegretta I, Terzano R, Crecchio C (2018) Solubilization of insoluble zinc compounds by zinc solubilizing bacteria (ZSB) and optimization of theirgrowth conditions. Environmental Science and Pollution Research 25(26):25862–25868

    CAS  PubMed  Article  Google Scholar 

  39. Kim, KH, Ten, LN, Liu QM, Im WT. Lee, ST (2006) Sphingobacterium daejeonense sp. nov., isolated from a compost sample. Int J Syst Evol Microbiol 56(9): 2031–2036.

  40. Kremer RJ, Souissi T (2001) Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Current Mirobiol 43(3):182–186. https://doi.org/10.1007/s002840010284

    CAS  Article  Google Scholar 

  41. Kumar S, Stecher G, Tamura K (2015) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  42. Kumar A, Singh R, Yadav A, Giri, DD, Singh PK, Pandey KD (2016) Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech, 6(1): 60.

  43. Kumari P, Netam RS, Kumar P (2020) Exemplifying rhizobacteria for growth stimulation and disease suppression in finger millet. J Plant Dis Prot 1–16.https://doi.org/10.1007/s41348-020-00352-8

  44. Lamb TG, Tonkyn DW, Kluepfel DA (1996) Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Can J Microbiol 42:1112–1120

    CAS  Article  Google Scholar 

  45. Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. John Wiley and Sons, Ames. https://doi.org/10.1002/9780470278376

    Google Scholar 

  46. Liu J, Yang LL, Xu CK, Xi JQ, Yang FX, Zhou F, Li, WJ (2012) Sphingobacterium nematocida sp. nov., a nematicidal endophytic bacterium isolated from tobacco. Int. J. S Evol Microbiol. 62(8):1809–1813. https://doi.org/10.1099/ijs.0.033670-0

  47. Louden C, Haarmann D, Lynne AM (2011) Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Edu 12:51–53

    Article  Google Scholar 

  48. Maryani N, Lombard L, Poerba YS, Subandiyah S, Crous PW, Kema GHJ (2019) Phylogeny and genetic diversity of the banana Fusarium wilt pathogen Fusarium oxysporum f.sp. cubense in the Indonesian centre of origin. Stud Mycol 92:155–194. https://doi.org/10.1016/j.simyco.2018.06.003

    CAS  Article  PubMed  Google Scholar 

  49. Mohammed BL, Hussen RA, Toama FN (2019) Biological control of Fusarium wilt in tomato by endophytic rhizobactria. Energy Procedia 157:171–179

    CAS  Article  Google Scholar 

  50. Mc Inroy JA, Kloepper JW (1995) Survey of indigenious bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342

    CAS  Article  Google Scholar 

  51. Noori MS, Saud HM (2012).Potential plant growth-promoting activity of Pseudomonas sp. isolated from paddy soil in Malaysia as biocontrol agent. J Plant Pathol Microb 3(2):1–4.

  52. Ordonez N, Garica BS, Laghari, HS, Akkary M, Harfouche EN, Al awar BN (2016) First report of Fusarium oxysporum f. sp. cubense tropical race 4 causing Panama disease in Cavendish bananas in Pakistan and Lebanon. Plant Dis 100(1):209–215

  53. Orjeda G (1998) Evaluation of Musa germplasm for resistance to sigatoka disease and Fusarium wilt. INIBAP Technical Guidelines III, International Plant Genetic Resources Institute, Rome, Italy, p 29

    Google Scholar 

  54. Pikovskaya RI (1948) Mobilization of phosphorous in soil in connection with the vital activity of some microbial species. Microbiologia 17:362–370

    CAS  Google Scholar 

  55. Ploetz RC (2015) Fusarium wilt of banana Phytopathol 105(12):1512–1521

  56. Ploetz RC (2019) “Fusarium wilt,” in Handbook of Diseases of Banana, Abacá and Ense. Ed. Jones D (Wallingford: CABI Publishing), 207–228.

  57. Promusa (2011) Tropical race 4. Promusa secretariat. Biodiversity international. Department of agriculture, France, p 540p

    Google Scholar 

  58. Qi P (2001) Status report of banana Fusarial wilt in China. p.119–120. In: Molina AB, Nik Masdek NH, Liew KW (eds.). Proceedings of International Workshop on the Banana Fusarium Wilt Disease, 18–20 October 1999. Banana Fusarium wilt management: Towards sustainable cultivation. INIBAP, Los Banos, Philippines

  59. Rajini SB, Nandhini M, Udayashankar AC, Niranjana SR, Lund OS, Prakash HS (2020) Diversity, plant growth-promoting traits, and biocontrol potential of fungal endophytes of Sorghum bicolor. Plant Pathol 69(4):642–654

    CAS  Article  Google Scholar 

  60. Rajkhowa DJ, Bhattacharyya PN, Sarma AK, Mahanta K (2015) Diversity and distribution of earthworms in different soil habitats of Assam, north-east India, an Indo-Burma biodiversity hotspot. Proceedings of the national academy of sciences, India section B: biological sciences 85(2):389–396. https://doi.org/10.1007/s40011-014-0380-1

    Article  Google Scholar 

  61. Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant growth-promoting bacterial endophytes. Applied soil ecology 61:217–224

    Article  Google Scholar 

  62. Riker AJ, Riker RS (1936) Introduction to reaserch on plant diseases. In: a guide to the principles and practices for studying for various plant diseases problems. University of Winconsin, USA. p. 117.

  63. Rodriguez RJ, White JF Jr, Arnold AE, Redman ARA (2009) Fungal endophytes: diversity and functional roles. Newphytologist 182(2):314–330. https://doi.org/10.1111/j.1469-8137.2009.02773.x

    CAS  Article  Google Scholar 

  64. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9. https://doi.org/10.1111/j.1574-6968.2007.00918.x

    CAS  Article  PubMed  Google Scholar 

  65. Sahu PK, Singh Udai B, Chakdar H, Bagul SY (2019) Bacterial endophytes in agriculture: concepts to application-A Training Manual. Published by Director. ICAR- National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh (India), pp 1–123

    Google Scholar 

  66. Saravanan VS, Subramoniam SR, Raj SA (2003) Assessing in vitro solubilization potential of different zinc solubilizing bacterial (ZSB) isolates. Braz J Microbiol 34:121–125

    Article  Google Scholar 

  67. Savani AK, Bhattcharyya A, Saikia B, Dinesh K (2019) Do climate and plant tissue influence the community ecology and population diversity of endophytes. Abstract presented in, “Endophytes and their application in agriculture. University of Agricultural Sciences, GKVK, Bangalore, p 29

    Google Scholar 

  68. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    CAS  Article  Google Scholar 

  69. Sharma D, Kaur T, Kaur A, Manhas RK (2015) Antagonistic and plant growth promoting activities of endophytic and soil actinomycetes. Archives of Phytopathol Plant Protection 46(14):1756–1768

    Google Scholar 

  70. Sheng XF, Zhao F, He LY, Qiu G, Chen L (2008) Isolation and characterization of silicate mineral-solubilizing Bacillus globisporus Q12 from the surfaces of weathered feldspar. Can J Microbiol 54(12):1064–1068

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. Siddiqui IA, Shaukat SS, Sheikh IH, Khan A (2006) Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J Microbiol Biotech 22(6):641–650. https://doi.org/10.1007/s11274-005-9084-2

    CAS  Article  Google Scholar 

  72. Singh R, Kumar A, Singh M, Pandey KD (2013) Effect of salt stress on endophytic bacteria isolated from root of Momordica charantia. In: Indian Society of Vegetable Science, National Symposium on Abiotic and Biotic Stress Management in Vegetable Crops

  73. Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco, USA

    Google Scholar 

  74. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. Su HJ, Hwang SC, Ko WH (1986) Fusarial wilt of Cavendish bananas in Taiwan. Plant Dis 70(9):814–818

    Article  Google Scholar 

  76. Sun JQ, Guo LD, Zang W, Ping WX, Chi DF (2008) Diversity and ecological distribution of endophytic fungi associated with medicinal plants. Sci China, Ser C Life Sci 51(8):751–759

    Article  Google Scholar 

  77. Suryanarayanan TS (2013) Endophyte research: going beyond isolation and metabolite documentation. Fungal Ecol 6(6):561–568

    Article  Google Scholar 

  78. Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar. Appl Environ Microbiol 75:748–757

    CAS  Article  Google Scholar 

  79. Tamura K, Nei M, Kumar S (2007) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA) 101:11030–11035

    Article  Google Scholar 

  80. Thangavelu R, Mustaffa MM (2010) First report on the occurrence of a virulent strain of Fusarium wilt pathogen (Race-1) infecting Cavendish (AAA) group of bananas in India. Plant Dis 94(11):1379–1379. https://doi.org/10.1094/PDIS-05-10-0330

    CAS  Article  PubMed  Google Scholar 

  81. Thangavelu R, Mostert D, Gopi M, Devi PG, Padmanaban B, Molina AB, Viljoen A (2019) First detection of Fusarium oxysporum f. sp. cubense tropical race 4 (TR4) on Cavendish banana in India. Eur J Plant Pathol 154(3):777–786. https://doi.org/10.1007/s10658-019-01701-6

  82. Thing AS, Meon S, Kadir J, Radu S, Singh G (2008) Endophytic microorganisms as potential growth promoters of banana. Biocontrol 53(3):541–553

    Article  Google Scholar 

  83. Upreti R, Thomas P (2015) Root-associated bacterial endophytes from Ralstonia solanacearum resistant and susceptible tomato cultivars and their pathogen antagonistic effects. Front Microbiol 6:255–259

    PubMed  PubMed Central  Article  Google Scholar 

  84. Vander der Plank JE (1963) Plant diseases. Academic Press, New York, London, Epidemic and control

    Google Scholar 

  85. Walduck G (2002) Tropical race 4 Panama disease: new varieties and quarantine help solve Panama riddle. Australian Bananas 15:16–17

    Google Scholar 

  86. Whitesides SK, Spottas RA (1991) Frequency, distribution and characteristics of endophytic Pseudomonas syringae in pear trees. Phytopathol 81:453–457

    Article  Google Scholar 

  87. Wilcoxson RD, Skovmand B, Atif AH (1975). Evaluation of wheat cultivars for the ability to retard development of stem rust. Ann Appl Biolo 80(3):275–287. https://doi.org/10.1111/j.1744-7348.1975.tb01633.x

  88. Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot (London) 95:707–735

    CAS  Article  Google Scholar 

  89. Xifang Zhao F, He LY, Qiu G, Chen L (2006) Isolation and characterization of silicate mineral-solubilizing Bacillus globisporus Q12 from the surfaces of weathered feldspar. Can J Microbiol 54(12):1064–1068. https://doi.org/10.1139/W08-089

    CAS  Article  Google Scholar 

  90. Yoo JJ, Eom AH (2012) Molecular identification of endophytic fungi isolated from needle leaves of conifers in Bohyeon Mountain. Korea Mycobiology 40(4):231–235

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Director Post Graduate Studies, Department of Plant Pathology, Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13 and Indian Council of Agricultural Research (ICAR) for rendering necessary facilities and support during the time of investigation

Funding

Funding for this Ph.D research work was provided by Director Post Graduate Studies, Assam Agricultural University, Jorhat-785013, India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ajit kumar Savani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability and material

Raw data are available upon request.

Ethics approval

As no human or mammalian subjects were involved in this research, no ethics approvals were required for this study.

Informed consent

All authors consent to participate in publication of these data.

Consent for publication

All authors consent to publish this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Savani, A.k., Bhattacharyya, A., Boro, R.C. et al. Exemplifying endophytes of banana (Musa paradisiaca) for their potential role in growth stimulation and management of Fusarium oxysporum f. sp cubense causing panama wilt. Folia Microbiol (2021). https://doi.org/10.1007/s12223-021-00853-5

Download citation