Valorization of apple and grape wastes with malic acid-degrading yeasts

Abstract

It is estimated that more than 20% of processed apples and grapes are discarded as waste, which is dominated by pomace rich in malic acid that could be converted to high-value organic acids or other chemicals. A total of 98 yeast strains isolated from apple, grape, and plum wastes were evaluated for their ability to degrade malic acid relative to known yeast strains. Most (94%) of the new isolates degraded malic acid efficiently (> 50%) in the presence and absence of exogenous glucose, whereas only 14% of the known strains could do so, thus confirming the value of exploring (and exploiting) natural biodiversity. The best candidates were evaluated in synthetic media for their ability to convert malic acid to other valuable products under aerobic and oxygen-limited conditions, with two strains that produced ethanol and acetic acid as potential biorefinery products during aerobic cultivations and oxygen-limited fermentations on sterilized apple and grape pomace. Noteworthy was the identification of a Saccharomyces cerevisiae strain that is more efficient in degrading malic acid than other members of the species. This natural strain could be of value in the wine-making industry that often requires pH corrections due to excess malic acid.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

Important strains and their sequences were submitted to PPRI and GenBank, respectively. Other raw data/strains are available on request.

References

  1. Ajila CM, Brar SK, Verma M et al (2012) Bio-processing of agro-byproducts to animal feed. Crit Rev Biotechnol 32:382–400. https://doi.org/10.3109/07388551.2012.659172

    CAS  Article  PubMed  Google Scholar 

  2. Amador P, Borges F, Côrte-Real M (1996) Biochemical characterization of a mutant of the yeast Pichia anomala derepressed for malic acid utilization in the presence of glucose. FEMS Microbiol Lett 141:227–231. https://doi.org/10.1111/j.1574-6968.1996.tb08389.x

    CAS  Article  PubMed  Google Scholar 

  3. Bae H, Yun S, Yoon I et al (2014) Assessment of organic acid and sugar composition in apricot, plumcot, plum, and peach during fruit development. J Appl Bot Food Qual 87:24–29. https://doi.org/10.5073/JABFQ.2014.087.004

    CAS  Article  Google Scholar 

  4. Baranowski K, Radler F (1984) The glucose-dependent transport of L-malate in Zygosaccharomyces bailii. Antonie Van Leeuwenhoek 50:329–340. https://doi.org/10.1007/BF00394646

    CAS  Article  PubMed  Google Scholar 

  5. Benito S (2019) The impacts of Schizosaccharomyces on winemaking. Appl Microbiol Biotechnol 103:4291–4312. https://doi.org/10.1007/s00253-019-09827-7

    CAS  Article  PubMed  Google Scholar 

  6. Cássio F, LeñO C (1993) A comparative study on the transport of L(-)malic acid and other short-chain carboxylic acids in the yeast Candida utilis: evidence for a general organic acid. Yeast 9:743–752. https://doi.org/10.1002/yea.320090708

    Article  PubMed  Google Scholar 

  7. Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421. https://doi.org/10.1016/j.enconman.2010.01.015

    CAS  Article  Google Scholar 

  8. Côrte-Real M, Leão C (1990) Transport of malic acid and other dicarboxylic acids in the yeast Hansenula anomala. Appl Environ Microbiol 56:1109–1113

    Article  Google Scholar 

  9. Côrte-Real M, Leão C, van Uden N (1989) Transport of L(-)malic acid and other dicarboxylic acids in the yeast Candida sphaerica. Appl Microbiol Biotechnol 31:551–555. https://doi.org/10.1007/BF00270793

    Article  Google Scholar 

  10. Del Mónaco SM, Barda NB, Rubio NC, Caballero AC (2014) Selection and characterization of a Patagonian Pichia kudriavzevii for wine deacidification. J Appl Microbiol 117:451–464. https://doi.org/10.1111/jam.12547

    CAS  Article  PubMed  Google Scholar 

  11. Department of Agriculture, Forestry and Fisheries (DAFF) (2018) A profile of the South African apple market value chain. Pretoria

  12. Downing DL (1989) Apple Cider. In: Downing D (ed) Processed apple products. Springer, New York, pp 169–188

    Google Scholar 

  13. Fell JW, Boekhout T, Fonseca A et al (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371. https://doi.org/10.1099/00207713-50-3-1351

    CAS  Article  PubMed  Google Scholar 

  14. Fredlund E, Druvefors U, Boysen M et al (2002) Physiological characteristics of the biocontrol yeast J121. FEMS Yeast Res 2:395–402. https://doi.org/10.1016/S1567-1356(02)00098-3

    CAS  Article  PubMed  Google Scholar 

  15. Gallander J (1977) Deacidification of eastern table wines with Schizosaccharomyces pombe. Am J Enol Vitic 28:65–68

    CAS  Google Scholar 

  16. Gao C, Fleet G (1995) Degradation of malic and tartaric acids by high density cell suspensions of wine yeasts. Food Microbiol 12:65–71. https://doi.org/10.1016/S0740-0020(95)80080-8

    CAS  Article  Google Scholar 

  17. Gulhane PA, Gomashe AV, Kadu K (2015) Apple pomace: a potential substrate for ethanol production. Int J Res Stud Biosci 3:110–114

    Google Scholar 

  18. International Energy Agency (IEA) (2007) IEA Bioenergy Task 42 on biorefineries: co-production of fuels, chemicals, power and materials from biomass. Minutes of the third task meeting, Copenhagen, Denmark, 25–26 March 2007. Available from: http://www.biorefinery.nl/ieabioenergy-task42/

  19. Karekar SC, Srinivas K, Ahring BK (2019) Kinetic study on heterotrophic growth of Acetobacterium woodii on lignocellulosic substrates for acetic acid production. Fermentation 5:17. https://doi.org/10.3390/fermentation5010017

    CAS  Article  Google Scholar 

  20. Khan N, Le Roes-Hill M, Welz PJ et al (2015) Fruit waste streams in South Africa and their potential role in developing a bio-economy. S Afr J Sci 111:1–11. https://doi.org/10.17159/sajs.2015/20140189

    Article  Google Scholar 

  21. Kim D, Hong Y, Park H (2008) Co-fermentation of grape must by Issatchenkia orientalis and Saccharomyces cerevisiae reduces the malic acid content in wine. Biotechnol Lett 30:1633–1638. https://doi.org/10.1007/s10529-008-9726-1

    CAS  Article  PubMed  Google Scholar 

  22. Korkie LJ, Janse BJH, Viljoen-Bloom M (2002) Utilising grape pomace for ethanol production. South African J Enol Vitic 23:31–36. https://doi.org/10.21548/23-1-2152

    Article  Google Scholar 

  23. Kurtzman C, Fell J, Boekhout T (2011) The yeasts: a taxonomic study, vol 3. Elsevier, Amsterdam, Netherlands

    Google Scholar 

  24. Liti G, Carter DM, Moses AM et al (2009) Population genomics of domestic and wild yeasts. Nature 458:337–341. https://doi.org/10.1038/nature07743

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Minnaar PP, Jolly NP, Paulsen V et al (2017) Schizosaccharomyces pombe and Saccharomyces cerevisiae yeasts in sequential fermentations: effect on phenolic acids of fermented Kei-apple (Dovyalis caffra L.) juice. Int J Food Microbiol 257:232–237. https://doi.org/10.1016/j.ijfoodmicro.2017.07.004

    CAS  Article  PubMed  Google Scholar 

  26. Monod J (1941) Recherches sur la croissance des cultures bactériennes. Université de Paris

  27. Osothsilp C (1987) Genetic and biochemical studies of malic acid metabolism in Schizosaccharomyces pombe. University of Guelph, Ontario, Canada

    Google Scholar 

  28. Osothsilp C, Subden R (1986) Isolation and characterization of Schizosaccharomyces pombe mutants with defective NAD-dependent malic enzyme. Can J Microbiol 32:481–486. https://doi.org/10.1139/m86-088

    CAS  Article  Google Scholar 

  29. Paganini C, Nogueira A, Silva N, Wosiacki G (2005) Utilization of apple pomace for ethanol production and food fiber obtainment. Ciência e Agrotecnologia 29:1231–1238. https://doi.org/10.1590/S1413-70542005000600018

    CAS  Article  Google Scholar 

  30. Parmar I, Rupasinghe HPV (2013) Bio-conversion of apple pomace into ethanol and acetic acid: enzymatic hydrolysis and fermentation. Bioresour Technol 130:613–620. https://doi.org/10.1016/j.biortech.2012.12.084

    CAS  Article  PubMed  Google Scholar 

  31. Passoth V, Fredlund E, Druvefors UÃ, Schnürer J (2006) Biotechnology, physiology and genetics of the yeast Pichia anomala. FEMS Yeast Res 6:3–13. https://doi.org/10.1111/j.1567-1364.2005.00004.x

    CAS  Article  PubMed  Google Scholar 

  32. Queiros O, Casal M, Althoff S et al (1998) Isolation and characterization of Kluyveromyces marxianus mutants deficient in malate transport. Yeast 14:401–407. https://doi.org/10.1002/(SICI)1097-0061(19980330)14:5%3c401::AID-YEA234%3e3.0.CO;2-T

    CAS  Article  PubMed  Google Scholar 

  33. Radler F (1993) Yeasts-metabolism of organic acids. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic, Chur, Switzerland, pp 165–182

    Google Scholar 

  34. Rattanapatpokin T, Chakrit T, Rattiya W et al (2020) Newly isolated malic acid fermenting yeast Meyerozyma caribbica AY 33–1 for bioconversion of glucose and cassava pulp. SEATUC J Sci Eng 1:62–70. https://doi.org/10.34436/sjse.1.1_62

    Article  Google Scholar 

  35. Ravindran R, Jaiswal AK (2016) Exploitation of food industry waste for high-value products. Trends Biotechnol 34:58–69. https://doi.org/10.1016/j.tibtech.2015.10.008

    CAS  Article  PubMed  Google Scholar 

  36. Redzepovic S, Orlic S, Majdak A, Kozina B et al (2003) Differential malic acid degradation by selected strains of Saccharomyces during alcoholic fermentation. Int J Food Microbiol 83:49–61. https://doi.org/10.1016/S0168-1605(02)00320-3

    CAS  Article  PubMed  Google Scholar 

  37. Rodriguez S, Thornton R (1989) A malic acid dependent mutant of Schizosaccharomyces malidevorans. Arch Microbiol 152:564–566. https://doi.org/10.1007/BF00425487

    CAS  Article  Google Scholar 

  38. Rodriguez SB, Thornton RJ (1990) Factors influencing the utilisation of L-malate by yeasts. FEMS Microbiol Lett 72:17–22. https://doi.org/10.1016/0378-1097(90)90337-P

    CAS  Article  Google Scholar 

  39. Saayman M, Viljoen-Bloom M (2006) The biochemistry of malic acid metabolism by wine yeasts – a review. South African J Enol Vitic 27:113–122

    CAS  Google Scholar 

  40. Salmon J (1987) L-Malic-acid permeation in resting cells of anaerobically grown Saccharomyces cerevisiae. Biochim Biophys Acta (BBA)-Biomembranes 901:30–34. https://doi.org/10.1016/0005-2736(87)90253-7

    CAS  Article  Google Scholar 

  41. Seo SH, Rhee CH, Park HD (2007) Degradation of malic acid by Issatchenkia orientalis KMBL 5774, an acidophilic yeast strain isolated from Korean grape wine pomace. J Microbiol 45:521–527

    CAS  PubMed  Google Scholar 

  42. Socaci SA, Fărcaş AC, Vodnar DC, Tofană M (2017) Food wastes as valuable sources of bioactive molecules. In: Shiomi N, Waisundara V (eds) Superfood and functional food: the development of superfoods and their roles as medicine. InTech, Rijeka, Croatia, pp 75–93

    Google Scholar 

  43. South African Wine Industry Information and Systems (SAWIS) (2018) South African wine industry 2018 statistics nr. 43. Paarl

  44. Steensels J, Snoek T, Meersman E et al (2014) Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev 38:947–995. https://doi.org/10.1111/1574-6976.12073

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Temperli A, Künsch U, Mayer K, Busch I (1965) Reinigung und eigenschaften der malatdehydrogenase (decarboxylierent) aus hefe. Biochim Biophys Acta - Enzymol Biol Oxid 110:630–632. https://doi.org/10.1016/S0926-6593(65)80080-7

    CAS  Article  Google Scholar 

  46. Theron MM, Lues JFR (2011) Organic acids and food preservation. CRC Press, Taylor & Francis Group

  47. Usenik V, Kastelec D, Veberič R, Štampar F (2008) Quality changes during ripening of plums (Prunus domestica L.). Food Chem 111:830–836. https://doi.org/10.1016/j.foodchem.2008.04.057

    CAS  Article  Google Scholar 

  48. Van Dyk JS, Gama R, Morrison D et al (2013) Food processing waste: problems, current management and prospects for utilisation of the lignocellulose component through enzyme synergistic degradation. Renew Sustain Energy Rev 26:521–531. https://doi.org/10.1016/j.rser.2013.06.016

    CAS  Article  Google Scholar 

  49. Van Zyl JM, Van Rensburg E, Van Zyl WH et al (2011) A kinetic model for simultaneous saccharification and fermentation of avicel with Saccharomyces cerevisiae. Biotechnol Bioeng 108:924–933. https://doi.org/10.1002/bit.23000

    CAS  Article  PubMed  Google Scholar 

  50. Vashisht A, Thakur K, Kauldhar BS et al (2019) Waste valorization: identification of an ethanol tolerant bacterium Acetobacter pasteurianus SKYAA25 for acetic acid production from apple pomace. Sci Total Environ 690:956–964. https://doi.org/10.1016/J.SCITOTENV.2019.07.070

    CAS  Article  PubMed  Google Scholar 

  51. Vilela A (2017) Biological demalication and deacetification of musts and wines: can wine yeasts make the wine taste better? Fermentation 3(4):51. https://doi.org/10.3390/fermentation3040051

    CAS  Article  Google Scholar 

  52. Volschenk H (2002) Characterisation of L-malic acid metabolism in strains of Saccharomyces and the development of a commercial wine yeast strain with an efficient malo-ethanolic pathway. Dissertation, Stellenbosch University

  53. Volschenk H, van Vuuren HJJ, Viljoen-Bloom M (2003) Malo-ethanolic fermentation in Saccharomyces and Schizosaccharomyces. Curr Genet 43:379–391. https://doi.org/10.1007/s00294-003-0411-6

    CAS  Article  PubMed  Google Scholar 

  54. Volschenk H, Viljoen-Bloom M, Subden RE, Van Vuuren HJJ (2001) Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae. Yeast 18:963–970. https://doi.org/10.1002/yea.743

    CAS  Article  PubMed  Google Scholar 

  55. Volschenk H, Viljoen-Bloom M, Van Staden J et al (2004) Genetic engineering of an industrial strain of Saccharomyces cerevisiae for L-malic acid degradation via an efficient malo-ethanolic pathway. South African J Enol Vitic 25:63–73. https://doi.org/10.21548/25-2-2183

    CAS  Article  Google Scholar 

  56. Von Bormann T (2019) Agri-food Systems: Facts and Futures: How South Africa can produce 50% more by 2050. WWF South Africa, Cape Town

    Google Scholar 

  57. Vreulink JM, Stone W, Botha A (2010) Effects of small increases in copper levels on culturable basidiomycetous yeasts in low-nutrient soils. J Appl Microbiol 109:1411–1421. https://doi.org/10.1111/j.1365-2672.2010.04770.x

    CAS  Article  PubMed  Google Scholar 

  58. Wang QM, Liu WQ, Liti G et al (2012) Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity. Mol Ecol 21:5404–5417. https://doi.org/10.1111/j.1365-294X.2012.05732.x

    Article  PubMed  Google Scholar 

  59. Wang X, Gong C, Tsao G (1998) Production of L-malic acid via biocatalysis employing wild-type and respiratory-deficient yeasts. Appl Biochem Biotechnol 70:845. https://doi.org/10.1007/BF02920194

    Article  PubMed  Google Scholar 

  60. Wen L, Wang L, Wang G (2011) Degradation of L-malic and citric acids by Issatchenkia terricola. Food Sci 32:220–223

    CAS  Google Scholar 

  61. Wills RBH, Scriven FM, Greenfield H (1983) Nutrient composition of stone fruit (Prunus spp.) cultivars: apricot, cherry, nectarine, peach and plum. J Sci Food Agric 34:1383–1389. https://doi.org/10.1002/jsfa.2740341211

    CAS  Article  PubMed  Google Scholar 

  62. WWF (2017) Food Loss and Waste: Facts and Futures: Taking steps towards a more sustainable food future. Available at https://www.wwf.org.za/food-loss-and-waste-facts-and-futures

Download references

Acknowledgments

The authors would like to thank Mrs. Lisa Warburg for the operation of the HPLC instrument.

Funding

This work was financially supported by the South African National Research Foundation (NRF) as part of the activities of the Chair of Energy Research: Biofuels and other clean alternative fuels (NRF grant 86423 awarded to WHvZ).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Willem Heber van Zyl.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Disclaimer

Opinions expressed and conclusions arrived at are those of the authors and are not necessarily to be attributed to the NRF.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1: Fig. S1 Malic acid degradation by newly isolated strains obtained from (a) apple pomace, (b) grape pomace and (c) plum samples, as well as (d) culture collection strains after 48 h of growth in YMC (malic acid only) and YMCG (malic acid + glucose) broth (with the exception of isolate 26 for which only YMC broth data was obtained). Each bar represents the average malic acid degradation per strain based on triplicate results after standardization against the reference strain, C. utilis YMV1153. Error bars indicate standard errors Fig. S2 Malic acid degradation capabilities of the 28 selected strains (indicated by their numerical designations) in (a) YMC broth and (b) YMCG broth when cultivated for 24 h and 48 h. Reference strain C. utilis YMV1153 indicated as (+). Each bar represents the average malic acid degradation per strain based on triplicate results strandardized against the (+) reference strain. Error bars indicate standard errors Fig. S3 GMI-assay depicting the color changes observed for the 28 strains after 70 h of growth. A color shift towards blue indicated the increase in pH from 3.3 towards 5.2 (conversion of malic acid to pyruvic acid). Triplicate strain cultures are labelled with their respective isolate numbers (as established in Table 1 and 3) (PPTX 417 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Steyn, A., Viljoen-Bloom, M. & van Zyl, W.H. Valorization of apple and grape wastes with malic acid-degrading yeasts. Folia Microbiol (2021). https://doi.org/10.1007/s12223-021-00850-8

Download citation