Skip to main content
Log in

MALDI-TOF MS Supplementary database for species identification employing the yeast diversity encountered on southern Brazil grapes

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The study of grape microflora is of interest when autochthonous yeasts, which are related to typical wine characteristics, are intended to be used in winemaking. The election of matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) as the first method for yeast identification was based on its accuracy and rapidity compared to alternative laboratory protocols for identification. The aims of this study are to consolidate the MALDI-TOF MS Supplementary database for environmental yeasts already constructed, to expand it through the addition of standard spectra of not included yeast species, and to discuss the grape microflora encountered in Southern Brazil. A total of 358 strains, isolated from grape berries, were submitted to protein profiling employing Biotyper and Supplementary database. Molecular biology techniques were used as alternatives to identify 6.4% of strains not promptly designated by protein profiling. These strains corresponded to the species Candida californica, Zygoascus meyerae, Candida akabanensis, Candida azyma, and Hanseniaspora vineae. The MALDI-TOF MS spectra of the identified species were added to Supplementary database. The presented results strengthen the need for further expansion of the mass spectra database to broaden its microbiological application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agustini BC, Silva LP, Bloch C Jr, Bonfim TM, da Silva GA (2014) Evaluation of MALDI-TOF mass spectrometry for identification of environmental yeasts and development of supplementary database. Appl Microbiol Biotechnol 98:5645–5654

    Article  CAS  Google Scholar 

  • Barata A, Malfeito-Ferreira M, Loureiro V (2012) The microbial ecology of wine grape berries. Int J Food Microbiol 153:243–259. https://doi.org/10.1016/j.ijfoodmicro.2011.11.025

    Article  CAS  PubMed  Google Scholar 

  • Barata A, Seborro F, Belloch C, Malfeito-Ferreira M, Loureiro V (2008) Ascomycetous yeast species recovered from grapes damaged by honeydew and sour rot. J Applied Microbiol 104:1182–1191. https://doi.org/10.1111/j.1365-2672.2007.03631.x

    Article  CAS  Google Scholar 

  • Barnett JA, Payne RW, Yarrow D (2000) Yeasts: characteristics and identification, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Bautista-Gallego J, Rodríguez-Gómez F, Barrio E, Querol A, Garrido-Fernández A, Arroyo-López FN (2011) Exploring the yeast biodiversity of green table olive industrial fermentations for technological applications. Int J Food Microbiol 147:89–96. https://doi.org/10.1016/j.ijfoodmicro.2011.03.013

    Article  CAS  PubMed  Google Scholar 

  • Bokulich NA, Thorngate JH, Richardson PM, Mills DA (2014) Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. P Natl Acad Sci USA 111:E139–E148. https://doi.org/10.1073/pnas.1317377110

    Article  CAS  Google Scholar 

  • Chavan P, Mane S, Kulkarni G, Shaikh S, Ghormade V, Nerkar DP, Shouche Y, Deshpande MV (2009) Natural yeast flora of different varieties of grapes used for wine making in India. Food Microbiol 26:801–808. https://doi.org/10.1016/j.fm.2009.05.005

    Article  CAS  PubMed  Google Scholar 

  • Christensen JJ, Dargis R, Hammer M, Justesen US, Nielsen XC, Kemp M (2012) Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis of Gram-positive, catalase-negative cocci not belonging to the Streptococcus or Enterococcus genus and benefits of database extension. J Clin Microbiol 50:1787–1791. https://doi.org/10.1128/JCM.06339-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Azeredo LA, Gomes EA, Mendonça-Hagler LC, Hagler AN (1998) Yeast communities associated with sugarcane in Campos, Rio de Janeiro, Brazil. Int Microbiol 1:205–208

    PubMed  Google Scholar 

  • Esteve-Zarzoso B, Belloch C, Uruburu F, Querol A (1999) Identification of yeasts by RFLP analysis of the 5.85 rRNA gene and the two ribosomal interna transcribed spacers. Int J Syst Bacteriol 49:329–337

    Article  CAS  Google Scholar 

  • Fleet GH (2003) Yeast interactions and wine flavour. Int J Food Microbiol 86:11–22. https://doi.org/10.1016/s0168-1605(03)00245-9

    Article  CAS  PubMed  Google Scholar 

  • Fleet GH (2008) Wine yeasts for the future. FEMS Yeast Res 8:979–995

    Article  CAS  Google Scholar 

  • Frutos RD, Fernández-Espinar MT, Querol A (2004) Identification of species of the genus Candida by analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Anton van Leeuw 85:175–185

    Article  Google Scholar 

  • Gayevskiy V, Goddard MR (2012) Geographic delineations of yeast communities and populations associated with vines and wines in New Zealand. ISME J 6:1281–1290

    Article  CAS  Google Scholar 

  • Guillamón JM, Sabaté J, Barrio E, Cano J, Querol A (1998) Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region. Arch Microbiol 169:387–392

    Article  Google Scholar 

  • Jara C, Laurie F, Mas A, Romero J (2016) Microbial terroir in Chilean valleys: diversity of non-conventional yeast. Front Microbiol 7:1–10. https://doi.org/10.3389/fmicb.2016.00663

    Article  Google Scholar 

  • Jolly NP, Varela C, Pretorius IS (2014) Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res 14:215–237. https://doi.org/10.1111/1567-1364.12111

    Article  CAS  PubMed  Google Scholar 

  • Knight S, Klaere S, Fedrizzi B, Goddard MR (2015) Regional microbial signatures positively correlate with differential wine phenotypes: evidence for a microbial aspect to terroir. Sci Rep 5:14233. https://doi.org/10.1038/srep14233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreger-van Rij NJW (1984) The yeasts: a taxonomic study, 3.Ed edn. Elsevier, Amsterdam

    Google Scholar 

  • Kurtzman CP, Robnett CJ (2003) Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res 3:417–432

    Article  CAS  Google Scholar 

  • Lau AF, Drake SK, Calhoun LB, Henderson CM, Zelazny AM (2013) Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 51:828–834. https://doi.org/10.1128/JCM.02852-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limtong S, Kaewwichian R, Yongmanitchai W, Kawasaki H (2014) Diversity of culturable yeasts in phylloplane of sugarcane in Thailand and their capability to produce indole-3-acetic acid. World J Microbiol Biotechnol 30:1785–1796

    Article  CAS  Google Scholar 

  • Lv X-C, Huang X-L, Zhang W, Rao P-F, Ni L (2013) Yeast diversity of traditional alcohol fermentation starters for Hong Qu glutinous rice wine brewing, revealed by culture-dependent and culture-independent methods. Food Control 34:183–190. https://doi.org/10.1016/j.foodcont.2013.04.020

    Article  CAS  Google Scholar 

  • Maier T, Schwarz G, Kostrzewa M (2008) Microorganism identification and classification based on MALDI-TOF MS fingerprinting with MALDI Biotyper. Bruker Daltonics, Germany

    Google Scholar 

  • Marklein G, Josten M, Klanke U, Muller E, Horre R, Maier T, Wenzel T, Kostrzewa M, Bierbaum G, Hoerauf A, Sahl HG (2009) Matrix-assisted laser desorption ionization–time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J Clin Microbiol 47:2912–2917

    Article  CAS  Google Scholar 

  • Mehta A, Silva LP (2015) MALDI-TOF MS profiling approach: how much can we get from it? Front Plant Sci 6:184

    Article  Google Scholar 

  • Nagatsuka Y, Kawasaki H, Seki T (2005) Pichia myanmarensis sp. nov., a novel cation-tolerant yeast isolated from palm sugar in Myanmar. Int J Syst Evol Microbiol 55:1379–1382. https://doi.org/10.1099/ijs.0.63558-0

    Article  CAS  PubMed  Google Scholar 

  • Nakase T, Suzuki M, Takashima M, Rosadi D, Hermosillo AM, Komagata K (1994) Candida akabanensis, a new species of yeast isolated from insect frass in a bark of a grape vine. Microbiol Cult Coll 10:35–43

    Google Scholar 

  • Orlic S et al (2010) Diversity and oenological characterization of indigenous Saccharomyces cerevisiae associated with Žilavka grapes. World J Microbiol Biotechnol 26:1483–1489. https://doi.org/10.1007/s11274-010-0323-9

    Article  Google Scholar 

  • Pan Y-L, Chow N-H, Chang TC, Chang H-C (2011) Identification of lethal Aspergillus at early growth stages based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Diagn Microbiol Infect Dis 70:344–354. https://doi.org/10.1016/j.diagmicrobio.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  • Pham T, Wimalasena T, Box WG, Koivuranta K, Storgårds E, Smart KA, Gibson BR (2011) Evaluation of ITS PCR and RFLP for differentiation and identification of brewing yeast and brewery ‘wild’ yeast contaminants. J I Brewing 117:556–568

    Article  CAS  Google Scholar 

  • Pinto A, Halliday C, Zahra M, van Hal S, Olma T, Maszewska K, Iredell JR, Meyer W, Chen SCA (2011) Matrix-assisted laser desorption ionization-time of flight mass spectrometry identification of yeasts is contingent on robust reference spectra. PLoS One 6:e25712

    Article  CAS  Google Scholar 

  • Ramos BD, Fernandes LRRMV (2012) An overview of geographical indications in Brazil. J Intellect Prop Rig 17:133–140

    Google Scholar 

  • Ribeiro JRA, Carvalho PMB, Cabral AS, Macrae A, Mendonça-Hagler LCS, Berbara RLL (2011) Candida middelhoveniana sp. nov., a new yeast species found on the rhizoplane of organically cultivated sugarcane. A van Leeuw J Microb 100:341–347

    Article  Google Scholar 

  • Rodríguez-Gómez F, Arroyo-López FN, López-López A, Bautista-Gallego J, Garrido-Fernández A (2010) Lipolytic activity of the yeast species associated with the fermentation/storage phase of ripe olive processing. Food Microbiol 27:604–612. https://doi.org/10.1016/j.fm.2010.02.003

    Article  Google Scholar 

  • Settanni L, Sannino C, Francesca N, Guarcello R, Moschetti G (2012) Yeast ecology of vineyards within Marsala wine area (western Sicily) in two consecutive vintages and selection of autochthonous Saccharomyces cerevisiae strains. J Biosci Bioeng 114:606–614. https://doi.org/10.1016/j.jbiosc.2012.07.010

    Article  CAS  PubMed  Google Scholar 

  • Sipiczki M (2011) Dimorphic cycle in Candida citri sp. nov., a novel yeast species isolated from rotting fruit in Borneo. FEMS Yeast Res 11:202–208

    Article  CAS  Google Scholar 

  • Smith MT, Robert V, Poot GA, Epping W, de Cock AW (2005) Taxonomy and phylogeny of the ascomycetous yeast genus Zygoascus, with proposal of Zygoascus meyerae sp. nov. and related anamorphic varieties. Int J Syst Evol Microbiol 55:1353–1363. https://doi.org/10.1099/ijs.0.63277-0

    Article  CAS  PubMed  Google Scholar 

  • Stevenson LG, Drake SK, Shea YR, Zelazny AM, Murray PR (2010) Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinically important yeast species. J Clin Microbiol 48:3482–3486

    Article  CAS  Google Scholar 

  • Stringini M, Comitini F, Taccari M, Ciani M (2008) Yeast diversity in crop-growing environments in Cameroon. Int J Food Microbiol 127:184–189

    Article  Google Scholar 

  • Strohalm M, Hassman M, Košata B, Kodíček M (2008) mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Commun Mass Spectrom 22:905–908

    Article  Google Scholar 

  • Valente MER, Perez R, Ramos AM, Chaves JBP (2012) Indicação geográfica de alimentos e bebidas no Brasil e na União Europeia. Cienc Rural 42:551–558

    Article  Google Scholar 

  • van Veen SQ, Claas EC, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48:900–907

    Article  Google Scholar 

  • Varela C, Siebert T, Cozzolino D, Rose L, McLean H, Henschke PA (2009) Discovering a chemical basis for differentiating wines made by fermentation with ‘wild’ indigenous and inoculated yeasts: role of yeast volatile compounds. Aust J Grape Wine R 15:238–248. https://doi.org/10.1111/j.1755-0238.2009.00054.x

    Article  CAS  Google Scholar 

  • Villa-Carvajal M, Querol A, Belloch C (2006) Identification of species in the genus Pichia by restriction of the internal transcribed spacers (ITS1 and ITS2) and the 5.8S ribosomal DNA gene. Antonie Van Leeuwenhoek 90:171–181. https://doi.org/10.1007/s10482-006-9071-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. Carlos Bloch and Dr. Luciano Paulino Silva for their assistance in mass spectrometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruna Carla Agustini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agustini, B.C., da Silva, G.A. & Bonfim, T.M.B. MALDI-TOF MS Supplementary database for species identification employing the yeast diversity encountered on southern Brazil grapes. Folia Microbiol 63, 685–693 (2018). https://doi.org/10.1007/s12223-018-0607-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-018-0607-2

Navigation