Folia Microbiologica

, Volume 63, Issue 3, pp 381–389 | Cite as

Characterization of N2O emissions and associated microbial communities from the ant mounds in soils of a humid tropical rainforest

  • M. Z. Majeed
  • E. Miambi
  • I. Barois
  • M. Bernoux
  • A. Brauman
Original Article


Tropical rainforest soils harbor a considerable diversity of soil fauna that contributes to emissions of N2O. Despite their ecological dominance, there is limited information available about the contribution of epigeal ant mounds to N2O emissions in these tropical soils. This study aimed to determine whether ant mounds contribute to local soil N emissions in the tropical humid rainforest. N2O emission was determined in vitro from individual live ants, ant-processed mound soils, and surrounding reference soils for two trophically distinct and abundant ant species: the leaf-cutting Atta mexicana and omnivorous Solenopsis geminata. The abundance of total bacteria, nitrifiers (AOA and AOB), and denitrifiers (nirK, nirS, and nosZ) was estimated in these soils using quantitative PCR, and their respective mineral N contents determined. There was negligible N2O emission detected from live ant individuals. However, the mound soils of both species emitted significantly greater (3-fold) amount of N2O than their respective surrounding reference soils. This emission increased significantly up to 6-fold in the presence of acetylene, indicating that, in addition to N2O, dinitrogen (N2) is also produced from these mound soils at an equivalent rate (N2O/N2 = 0.57). Functional gene abundance (nitrifiers and denitrifiers) and mineral N pools (ammonium and nitrate) were significantly greater in mound soils than in their respective reference soils. Furthermore, in the light of the measured parameters and their correlation trends, nitrification and denitrification appeared to represent the major N2O-producing microbial processes in ant mound soils. The ant mounds were estimated to contribute from 0.1 to 3.7% of the total N2O emissions of tropical rainforest soils.


Ant mounds Tropical forest soil N-cycle genes Nitrous oxide emission Microbial denitrification Atta mexicana Solenopsis geminata 



The authors would like to express their gratitude to Ms. Anne-Laure Pablo, Ms. Magdalena Lopez, and Mr. Bruno Buatois for their assistance during all experimentation at the platforms of UMR Eco&Sols (Montpellier, France), INECOL (Xalapa, Mexico), and UMR 5175, CEFE (Montpellier, France), respectively. We are thankful to the Higher Education Commission (HEC) of Pakistan and ECOS-ANUIES-CONACYT project (M08A01) for financial support provided for this study.

Supplementary material

12223_2017_575_MOESM1_ESM.docx (14 kb)
Table S1 (DOCX 13 kb)


  1. Amador JA, Görres JH (2007) Microbiological characterization of the structures built by earthworms and ants in an agricultural field. Soil Biol Biochem 39(8):2070–2077. CrossRefGoogle Scholar
  2. Baggs EM (2011) Soil microbial sources of nitrous oxide: recent advances in knowledge, emerging challenges and future direction. Curr Opin Environ Sustain 3(5):321–327. CrossRefGoogle Scholar
  3. Benckiser G (2010) Ants and sustainable agriculture. A review. Agron Sustain Dev 30(2):191–199. CrossRefGoogle Scholar
  4. Bender MR, Wood CW (2003) Influence of red imported fire ants on greenhouse gas emissions from a Piedmont Plateau pasture. Commun Soil Sci Plant Anal 34(13-14):1873–1889. CrossRefGoogle Scholar
  5. Boots B, Keith AM, Niechoj R, Breen J, Schmidt O, Clipson N (2012) Unique soil microbial assemblages associated with grassland ant species with different nesting and foraging strategies. Pedobiologia 55(1):33–40. CrossRefGoogle Scholar
  6. Boulton A, Amberman K (2006) How ant nests increase soil biota richness and abundance: a field experiment. Biodivers Conserv 15(1):69–82. CrossRefGoogle Scholar
  7. Boyle-Yarwood SA, Bottomley PJ, Myrold DD (2008) Community composition of ammonia-oxidizing bacteria and archaea in soils under stands of red alder and Douglas fir in Oregon. Environ Microbiol 10(11):2956–2965. CrossRefPubMedGoogle Scholar
  8. Bremner J (1997) Sources of nitrous oxide in soils. Nutr Cycl Agroecosyst 49(1/3):7–16. CrossRefGoogle Scholar
  9. Breuer L, Papen H, Butterbach-Bahl K (2000) N2O emission from tropical forest soils of Australia. J Geophys Res 105:353–367CrossRefGoogle Scholar
  10. Brummer C, Papen H, Wassmann R, Bruggemann N (2009a) Fluxes of CH4 and CO2 from soil and termite mounds in south Sudanian savanna of Burkina Faso (West Africa). Glob Biogeochem Cycles 23(1) doi:
  11. Brummer C, Papen H, Wassmann R, Bruggemann N (2009b) Termite mounds as hot spots of nitrous oxide emissions in South-Sudanian savanna of Burkina Faso (West Africa). Geophys Res Lett 36(9):L09814. CrossRefGoogle Scholar
  12. Cammeraat ELH, Risch AC (2008) The impact of ants on mineral soil properties and processes at different spatial scales. J Appl Entomol 132(4):285–294. CrossRefGoogle Scholar
  13. Carroll CR, Risch SJ (1983) Tropical annual cropping systems—ant ecology. Environ Manag 7(1):51–57. CrossRefGoogle Scholar
  14. Dandie CE, Wertz S, Leclair CL, Goyer C, Burton DL, Patten CL, Zebarth BJ, Trevors JT (2011) Abundance, diversity and functional gene expression of denitrifier communities in surrounding riparian and agricultural zones. FEMS Microbiol Ecol 77(1):69–82. CrossRefPubMedGoogle Scholar
  15. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, … Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Climate Change 2007: Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge and New YorkGoogle Scholar
  16. Dostál P, Březnová M, Ozlíčková V, Herben T, Ovář P (2005) Ant-induced soil modification and its effect on plant below-ground biomass. Pedobiologia 49(2):127–137. CrossRefGoogle Scholar
  17. Environmental Protection Agency (2010) Methane and nitrous oxide emissions from natural sources. US Environmental Protection Agency, Washington, DC Inventory of U.S. greenhouse gas emissions and sinks, 1990–2008, 1–194Google Scholar
  18. Farji-Brener AG (2010) Leaf-cutting ant nests and soil biota abundance in a semi-arid steppe of Northwestern Patagonia. Sociobiology 56:549–557Google Scholar
  19. Folgarait PJ (1998) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers Conserv 7(9):1221–1244. CrossRefGoogle Scholar
  20. Frouz J, Jilková V (2008) The effect of ants on soil properties and processes (Hymenoptera: Formicidae). Myrmecol New 11:191–199Google Scholar
  21. Garcia JA, Fragoso C (2003) Influence of different food substrates on growth and reproduction of two tropical earthworm species (Pontoscolex corethrurus and Amynthas corticis). Pedobiologia 47:754–763Google Scholar
  22. Ginzburg O, Whitford W, Steinberger Y (2008) Effects of harvester ant (Messor spp.) activity on soil properties and microbial communities in a Negev Desert ecosystem. Biol Fertil Soils 45(2):165–173. CrossRefGoogle Scholar
  23. Granli T, Bockman OC (1995) Nitrous oxide (N2O) emissions from soils in warm climates. Fertil Res 42(1-3):159–163. CrossRefGoogle Scholar
  24. Haines BL (1978) Element and energy flows through colonies of the leaf-cutting ant, Atta-colombica, in Panama. Biotropica 10(4):270–277. CrossRefGoogle Scholar
  25. Hölldobler B, Wilson EO (2008) The superorganism: the beauty, elegance, and strangeness of insect societies. W.W. Norton and Company, New York City 576 pp., ISBN-13: 978-0393067040Google Scholar
  26. Hudson TM, Turner BL, Herz H, Robinson JS (2009) Temporal patterns of nutrient availability around nests of leaf-cutting ants (Atta colombica) in secondary moist tropical forest. Soil Biol Biochem 41(6):1088–1093. CrossRefGoogle Scholar
  27. Intergovernmental Panel on Climate Change (2007) IPCC Fourth Assessment Report. Climate Change 2007, AR4. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  28. Janion-Scheepers C, Measey J, Braschler B, Chown SL, Coetzee L, Colville JF et al (2016) Soil biota in a megadiverse country: current knowledge and future research directions in South Africa. Pedobiologia 59(3):129–174. CrossRefGoogle Scholar
  29. Jílková V, Picek T, Šestauberová M, Krištůfek V, Cajthaml T, Frouz J (2016) Methane and carbon dioxide flux in the profile of wood ant (Formica aquilonia) nests and the surrounding forest floor during a laboratory incubation. FEMS Microbiol Ecol 92(10):fiw141. CrossRefPubMedGoogle Scholar
  30. Jones CG, Gutiérrez JL, Groffman PM, Shachak M (2006) Linking ecosystem engineers to soil processes: a framework using the Jenny state factor equation. Eur J Soil Biol 42:39–53CrossRefGoogle Scholar
  31. Jones JB, Diane W (2006) Microhabitat-specific controls on soil respiration and denitrification in the Mojave desert: the role of harvester ant nests and vegetation. West N Am Natur 66(4):426–433.[426:MCOSRA]2.0.CO;2 CrossRefGoogle Scholar
  32. Jouquet P, Dauber J, Lagerlöf J, Lavelle P, Lepage M (2006) Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Appl Soil Ecol 32(2):153–164. CrossRefGoogle Scholar
  33. Jouquet P, Hartmann C, Choosai C, Hanboonsong Y, Brunet D, Montoroi JP (2008) Different effects of earthworms and ants on soil properties of paddy fields in North-East Thailand. Paddy Water Environ 6(4):381–386. CrossRefGoogle Scholar
  34. Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193Google Scholar
  35. Lenoir L, Persson T, Bengtsson J (2001) Wood ant nests as potential hot spots for carbon and nitrogen mineralisation. Biol Fertil Soils 34(4):235–240. CrossRefGoogle Scholar
  36. Lensi R, Domenach A, Abbadie L (1992) Field study of nitrification and denitrification in a wet savanna of West Africa (Lamto, Côte d'Ivoire). Plant Soil 147(1):107–113. CrossRefGoogle Scholar
  37. Mackay WP, Porter S, Gonzalez D, Rodriguez A, Armendedo H, Rebeles A, Vinson SB (1990) A comparison of mongyne and polygyne populations of the tropical fire ant, Solenopsis geminata (Hymenoptera, Formicidae), in Mexico. J Kans Entomol Soc 63:611–615Google Scholar
  38. Majeed MZ, Miambi E, Robert A, Bernoux M, Brauman A (2012) Xylophagous termites: a potential sink for atmospheric nitrous oxide. Eur J Soil Biol 53:121–125. CrossRefGoogle Scholar
  39. Majeed MZ, Miambi E, Barois I, Blanchart E, Brauman A (2013) Emissions of nitrous oxide from casts of tropical earthworms belonging to different ecological categories. Pedobiologia 56(1):49–58. CrossRefGoogle Scholar
  40. Mintzer AC (2006) Changes over 20 years in populations of the Mexican leafcutting ant, Atta mexicana, at Organ Pipe Cactus National Monument, Arizona –National Park Service and Western National Parks Association 11 ppGoogle Scholar
  41. Pinto-Tomas AA, Anderson MA, Suen G, Stevenson DM, Chu FST, Cleland WW, Weimer PJ, Currie CR (2009) Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326(5956):1120–1123. CrossRefPubMedGoogle Scholar
  42. Poderoso JCM, Ribeiro GT, Gonçalves GB, Mendonça PD, Polanczyk RA, Zanetti R., … Zanuncio JC (2009) Nest and foraging characteristics of Acromyrmex landolti balzani (Hymenoptera: Formicidae) in Northeast Brazil. Sociobiology 54:361–371Google Scholar
  43. Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326(5949):123–125. CrossRefPubMedGoogle Scholar
  44. Ríos-Casanova L, Valiente-Banuet A, Rico-Gray V (2006) Ant diversity and its relationship with vegetation and soil factors in an alluvial fan of the Tehuacán Valley, Mexico. Acta Oecol 29(3):316–323. CrossRefGoogle Scholar
  45. Risch AC, Jurgensen MF, Schutz M, Page-Dumroese DS (2005) The contribution of red wood ants to soil C and N pools and CO2 emissions in subalpine forests. Ecology 86(2):419–430. CrossRefGoogle Scholar
  46. Rodrigues A, Pagnocca FC, Bacci M, Hebling MJA, Bueno OC, Pfenning LH (2005) Variability of non-mutualistic filamentous fungi associated with Atta sexdens rubropilosa nests. Folia Microbiol 50(5):421–425. CrossRefGoogle Scholar
  47. Roxo E, Campos AEC, Alves MP, Couceiro PMR, Harakava R, … Melo FAF (2010) Ants’ role (Hymenoptera: Formicidae) as potential vectors of Mycobacteria dispersion. Arq Inst Biol 77:359–362Google Scholar
  48. Schuller L, Matte GR, Matte MH (2009) A new sterile technique effective on capturing tramp ants for microbiological investigations. Neotrop Entomol 38(4):560–563. CrossRefPubMedGoogle Scholar
  49. Schultz TR (2000) In search of ant ancestors. Proc Nat Acad Sci U S A 97(26):14028–14029. CrossRefGoogle Scholar
  50. Sousa-Souto L, Santos DCD, Ambrogi BG, dos Santos MJC, Guerra MBB, Pereira ER (2012) Increased CO2 emission and organic matter decomposition by leaf-cutting ant nests in a coastal environment. Soil Biol Biochem 44(1):21–25. CrossRefGoogle Scholar
  51. Thompson KA, Bent E, Abalos D, Wagner-Riddle C, Dunfield KE (2016) Soil microbial communities as potential regulators of in situ N2O fluxes in annual and perennial cropping systems. Soil Biol Biochem 103:262–273. CrossRefGoogle Scholar
  52. Verchot LV, Moutinho PR, Davidson EA (2003) Leaf-cutting ant (Atta sexdens) and nutrient cycling: deep soil inorganic nitrogen stocks, mineralization, and nitrification in Eastern Amazonia. Soil Biol Biochem 35(9):1219–1222. CrossRefGoogle Scholar
  53. Vitousek PM, Matson PA (1993) Agriculture, the global nitrogen cycle, and trace gas flux. The biogeochemistry of global change: radiative trace gases. R.S. Oremland. New York, Chapman and Hall, Springer, pp. 193−208Google Scholar
  54. Weier KL, Macrae IC, Myers RJK (1993) Denitrification in a clay soil under pasture and annual crop−estimation of potential losses using intact soil cores. Soil Biol Biochem 25(8):991–997. CrossRefGoogle Scholar
  55. Werner C, Butterbach-Bahl K, Haas E, Hickler T, Kiese R (2007) A global inventory of N2O emissions from tropical rainforest soils using a detailed biogeochemical model. Glob Biogeochem Cycles 21Google Scholar
  56. Wetterer JK (2011) Worldwide spread of the tropical fire ant, Solenopsis geminata (Hymenoptera: Formicidae). Myrmecolog New 14:21–35Google Scholar
  57. Wirth R, Meyer ST, Almeida WR, Araujo MV, Barbosa VS, Leal IR (2007) Increasing densities of leaf-cutting ants (Atta spp.) with proximity to the edge in a Brazilian Atlantic forest. J Trop Ecol 23(04):501–505. CrossRefGoogle Scholar
  58. Wu H, Batzer DP, Yan X, Lu X, Wu D (2013) Contributions of ant mounds to soil carbon and nitrogen pools in a marsh wetland of Northeastern China. Appl Soil Ecol 70:9–15. CrossRefGoogle Scholar
  59. Wuebbles DJ (2009) Nitrous oxide: no laughing matter. Science 326(5949):56–57. CrossRefPubMedGoogle Scholar
  60. Yoshinari T, Hynes R, Knowles R (1977) Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil. Soil Biol Biochem 9(3):177–183. CrossRefGoogle Scholar
  61. Zientz E, Feldhaar H, Stoll S, Gross R (2005) Insights into the microbial world associated with ants. Arch Microbiol 184(4):199–206. CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2017

Authors and Affiliations

  • M. Z. Majeed
    • 1
    • 2
  • E. Miambi
    • 3
  • I. Barois
    • 4
  • M. Bernoux
    • 1
  • A. Brauman
    • 1
  1. 1.Institut de Recherche pour le Développement (IRD)UMR Eco & SolsMontpellierFrance
  2. 2.Department of EntomologyUniversity College of Agriculture, University of SargodhaSargodhaPakistan
  3. 3.Institut d’Ecologie et des Sciences de l’Environnement de Paris (IEES)Université Paris Est CréteilCréteilFrance
  4. 4.Red Ecología FuncionalInstituto de EcologíaVeracruzMexico

Personalised recommendations