Folia Microbiologica

, Volume 63, Issue 3, pp 345–351 | Cite as

Assessment of the diagnostic value of specific anti-Toxocara IgA in Slovakian patients suspected to have toxocarosis

  • Vojtech Boldiš
  • František Ondriska
  • Simona Lipková
Original Article


Human toxocarosis is one of the most widespread and prevalent helminthic zoonosis in many countries, including Slovakia. The aim was to evaluate the usefulness of IgA anti-Toxocara antibody detection in the serodiagnosis of toxocarosis. The levels of specific IgA antibodies were determined by excretory-secretory (ES)-enzyme-linked immunosorbent assay (ELISA). The IgA seropositivity in IgG anti-Toxocara seropositive patients (n = 52) was 32.7% and found to be highest in the oldest age groups (P = 0.026). The presence of IgA in suspected patients for toxocarosis were evaluated in respect to some characteristics of examined persons. Substantially higher IgA seropositivity was detected in patients with increased total IgE (44.8%) than in subjects with a normal level of IgE (17.4%; P = 0.036). No associations (P > 0.05) were found between IgA seropositivity and sex, level of specific IgG antibodies, avidity of IgG, eosinophilia, domicile, geophagia, traveling abroad, dog/cat ownership, or clinical symptoms. The IgA-ELISA showed sensitivity of 57.1% and specificity of 100%. Mild correlations (r = 0.302, r = 0.305, r = − 0.409) were observed between the levels of anti-Toxocara IgA antibodies and age, the amounts of eosinophils and IgA antibody levels, the amounts of eosinophils, and the values of IgG avidity, respectively. The presence of anti-Toxocara IgA may facilitate the diagnosis of toxocarosis and may well be useful for the determination of acute Toxocara infection. Moreover, this test should be accompanied by other immunological markers of examined patients (e.g., increased total IgE, eosinophilia, and low-avidity IgG antibodies).


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Antolová D, Reiterová K, Miterpáková M, Stanko M, Dubinský P (2004) Circulation of Toxocara spp. in suburban and rural ecosystems in the Slovak Republic. Vet Parasitol 126(3):317–324. CrossRefPubMedGoogle Scholar
  2. Antolová D, Jarčuška P, Janičko M, Madarasová-Gecková A, Halánová M, Čisláková L, Kalinová Z, Reiterová K, Škutová M, Pella D, Mareková M, Hepameta Team (2015) Seroprevalence of human Toxocara infections in the Roma and non-Roma populations of Eastern Slovakia: a cross-sectional study. Epidemiol Infect 143(10):2249–2258. CrossRefPubMedGoogle Scholar
  3. Boldiš V, Ondriska F, Špitalská E, Reiterová K (2015) Immunodiagnostic approaches for the detection of human toxocarosis. Exp Parasitol 159:252–258. CrossRefPubMedGoogle Scholar
  4. Butcher R (1999) Stray dogs: a worldwide problem. J Small Anim Pract 40:458–459Google Scholar
  5. Carvalho EAA, Rocha RL (2014) Visceral larva migrans syndromes associated with toxocarosis: epidemiology, clinical and laboratory aspects of human toxocarosis. Curr Trop Med Rep 1(1):74–79. CrossRefGoogle Scholar
  6. Chapa-Ruiz MR, Gonzalez-Pantaleon D, Morales-Galan A, Contreras-Ramos A, Salinas-Tobon MR, Martinez Y, Zamora R (2001) A follow-up study of the human class and subclass antibody response developed against the adult stage of Trichinella spiralis. Parasite 8:163–167CrossRefGoogle Scholar
  7. Cooper PJ (2008) Toxocara canis infection: an important and neglected environmental risk factor for asthma? Clin Exp Allergy 38(4):551–553. CrossRefPubMedGoogle Scholar
  8. Dakkak A (2010) Echinococcosis/hydatisosis: a severe threat in Mediterranean countries. Vet Parasitol 174(1-2):2–11. CrossRefPubMedGoogle Scholar
  9. Daryani A, Sharif M, Amouei A, Gholami S (2009) Prevalence of Toxocara canis in stray dogs, northern Iran. Pak J Biol Sci 12(14):1031–1035CrossRefPubMedGoogle Scholar
  10. Decoster A, Caron A, Darcy F, Capron A (1988) IgA antibodies against P30 as markers of congenital and acute toxoplasmosis. Lancet 2(8620):1104–1107CrossRefPubMedGoogle Scholar
  11. Del Prete GF, De Carli M, Ricci M, Romagnani S (1991) Helper activity for immunoglobulin synthesis of T helper type 1 (Th1) and Th2 human T cell clones: the help of Th1 clones is limited by their cytolytic capacity. J Exp Med 174(4):809–813. CrossRefPubMedGoogle Scholar
  12. Dent LA, Daly CM, Mayrhofer G, Zimmerman T, Hallett A, Bignold LP, Creaney J, Parsons JC (1999) Interleukin-5 transgenic mice show enhanced resistance to primary infections with Nippostrongylus brasiliensis but not primary infections with Toxocara canis. Infect Immun 67(2):989–993PubMedPubMedCentralGoogle Scholar
  13. Dubinský P, Akao N, Reiterová K, Konaková G (2000) Comparison of the sensitive screening kit with two ELISA sets for detection of anti-Toxocara antibodies. Southeast Asian J Trop Med Public Health 31(2):394–398PubMedGoogle Scholar
  14. Dziemian E, Zarnowska H, Kołodziej-Sobocińska M, Machnicka B (2008) Determination of the relative avidity of the specific IgG antibodies in human toxocarosis. Parasite Immunol 30(3):187–190. CrossRefPubMedGoogle Scholar
  15. Eberhard ML, Alfano E (1998) Adult Toxocara cati infections in US children: report of four cases. Am J Trop Med Hyg 59(3):404–406. CrossRefPubMedGoogle Scholar
  16. Elefant GR, Shimizu SH, Sanchez MCA, Jacob CMA, Ferreira AW (2006) A serological follow-up of toxocarosis patients after chemotherapy based on the detection of IgG, IgA and IgE antibodies by enzyme-linked immunosorbent assay. J Clin Lab Anal 20(4):164–172. CrossRefPubMedGoogle Scholar
  17. Elefant GR, Shimizu SH, Jacob CMA, Sanchez MCA, Ferreira AW (2011) Potential immunological markers for diagnosis and therapeutic assessment of toxocarosis. Rev Inst Med Trop São Paulo 53(2):61–65. CrossRefGoogle Scholar
  18. Espinoza YA, Huapaya PH, Roldán WH, Jiménez S, Arce Z, Lopez E (2008) Clinical and serological evidence of Toxocara infection in school children from Morrope District, Lambayeque, Peru. Rev Inst Med Trop Sao Paulo 50(2):101–105. CrossRefPubMedGoogle Scholar
  19. Fenoy S, Rodero M, Pons E, Aguila C, Cuéllar C (2008) Follow-up of antibody avidity in BALB/c mice infected with Toxocara canis. Parasitology 135(6):725–733. CrossRefPubMedGoogle Scholar
  20. Fillaux J, Magnaval JF (2013) Laboratory diagnosis of human toxocarosis. Vet Parasitol 193(4):327–336. CrossRefPubMedGoogle Scholar
  21. Genta RM, Gatti S, Linke MJ, Cevini C, Scaglia M (1988) Endemic strongyloidosis in northern Italy: clinical and immunological aspects. Q J Med 68(257):679–690PubMedGoogle Scholar
  22. Havasiová K, Dubinský P, Štefančíková A (1993) A seroepidemiological study of human Toxocara infection in the Slovak Republic. J Helminthol 67(04):291–296. CrossRefPubMedGoogle Scholar
  23. Hogarth-Scott RS, Johansson SG, Bennich H (1969) Antibodies to Toxocara in the sera of visceral larva migrans patients: the significance of raised levels of IgE. Clin Exp Immunol 5(6):619–625PubMedPubMedCentralGoogle Scholar
  24. Hubner J, Uhliková M, Leissová M (2001) Diagnosis of the early phase of larval toxocarosis using IgG avidity. Epidemiol Microbiol Immunol 50:67–70Google Scholar
  25. Ishida MM, Rubinsky-Elefant G, Ferreira AW, Hoshino-Shimizu S, Vaz AJ (2003) Helminth antigens (Taenia solium, Taenia crassiceps, Toxocara canis, Schistosoma mansoni and Echinococcus granulosus) and cross-reactivities in human infections and immunized animals. Acta Trop 89(1):73–84. CrossRefPubMedGoogle Scholar
  26. Johansson SG, Mellbin T, Vahlquist B (1968) Immunoglobulin levels in Ethiopian preschool children with special reference to high concentrations of immunoglobulin E (IgND). Lancet 1(7552):1118–1121CrossRefPubMedGoogle Scholar
  27. Kayes SG (1997) Human toxocarosis and the visceral larva migrans syndrome: correlative immunopathology. Chem Immunol 66:99–124. CrossRefPubMedGoogle Scholar
  28. Magnaval JF, Fabre R, Maurières P, Charlet JP, de Larrard B (1992) Evaluation of an immunoenzymatic assay detecting specific anti-Toxocara immunoglobulin E for diagnosis and posttreatment follow-up of human toxocarosis. J Clin Microbiol 30(9):2269–2274PubMedPubMedCentralGoogle Scholar
  29. Magnaval JF, Michault A, Calon N, Charlet JP (1994) Epidemiology of human toxocarosis in La Reunion. Trans R Soc Trop Med Hyg 88(5):531–533. CrossRefPubMedGoogle Scholar
  30. Magnaval JF, Glickman LT, Dorchies P, Morassin B (2001) Highlights of human toxocarosis. Korean J Parasit 39(1):1–11. CrossRefGoogle Scholar
  31. Maizels GM, Page AP (1990) Surface associated glycoproteins from Toxocara canis larval parasites. Acta Trop 47(5-6):355–364. CrossRefPubMedGoogle Scholar
  32. Markechová D, Tirpáková A, Stehlíková B (2011) Fundamentals of statistics for educators, faculty of natural sciences UKF Nitra (ed) Nitra (in Slovak)Google Scholar
  33. Mendez-Loredo B, Martinez Y, Zamora R, Chapa-Ruiz R, Salinas-Tobon R (2001) Class specific antibody responses to newborn larva antigens during Trichinella spiralis human infection. Parasite 8:152–157CrossRefGoogle Scholar
  34. Musa BO, Onyemelukwe GC (2000) Secretory IgA and complement levels in patients with hookworm infection in Zaria. Afr J Med Sci 29:111–114Google Scholar
  35. Ondriska F, Mačuhová K, Melicherová J, Reiterová K, Valentová D, Beladičová V, Halgoš J (2013) Toxocarosis in urban environment of western Slovakia. Helminthologia 50:261–268CrossRefGoogle Scholar
  36. Pinelli E, Withagen C, Fonville M, Verlaan A, Dormans J, Loveren H, Nicoll G, Maizels RM, Giessen J (2005) Persistent airway hyper-responsiveness and inflammation in Toxocara canis-infected BALB/c mice. Clin Exp Allergy 35(6):826–832. CrossRefPubMedGoogle Scholar
  37. Prestes-Carneiro LE, Santarém V, Zago SCS, Miguel NA, Farias SF, Villas R, Vaz AJ, Rubinsky-Elefant G (2008) Sero-epidemiology of toxocarosis in a rural settlement in São Paulo state, Brazil. Ann Trop Med Parasitol 102(4):347–356. CrossRefPubMedGoogle Scholar
  38. Primavera KSC, Hoshino-Shimizu S, Umezawa ES, Peres BA, Manigot DA, Camargo ME (1988) Immunoglobulin a antibodies to Trypanosoma cruzi antigens in digestive forms of Chagas’ disease. J Clin Microbiol 26(10):2101–2104PubMedPubMedCentralGoogle Scholar
  39. Rossi CL, Takahashi EE, Partel CD, Teodoro LG, Silva LJ (1993) Total serum IgE and parasite-specific IgG and IgA antibodies in human strongyloidosis. Rev Inst Med Trop Sao Paulo 35(4):361–365. CrossRefPubMedGoogle Scholar
  40. Smith HV (1993) Antibody reactivity in human toxocarosis. In: Lewis JW, Maizels RM (eds) Toxocara and Toxocarosis. Clinical, epidemiological and molecular perspectives. British Society for Parasitology, London, pp 91–109Google Scholar
  41. Takamoto M, Wang ZX, Watanabe N, Matsuzawa A, Nariuchi H, Sugane K (1998) Eosinophilia, IgE production, and cytokine production by lung T cells in surface CD4-deficient mutant mice infected with Toxocara canis. Immunology 95(1):97–104. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Taylor MR, Keane CT, O’Connor P, Mulvihill E, Holland C (1988) The expanded spectrum of toxocaral disease. Lancet 1(8587):692–695CrossRefPubMedGoogle Scholar
  43. Voslářová E, Passantino A (2012) Stray dog and cat laws and enforcement in Czech Republic and in Italy. Ann Ist Super Sanità 48(1):97–104. PubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2017

Authors and Affiliations

  • Vojtech Boldiš
    • 1
  • František Ondriska
    • 1
    • 2
  • Simona Lipková
    • 1
  1. 1.Department of ParasitologyMedirex Ltd.BratislavaSlovakia
  2. 2.Faculty of Health Care and Social WorkTrnava University in TrnavaTrnavaSlovakia

Personalised recommendations