Folia Microbiologica

, Volume 63, Issue 3, pp 401–404 | Cite as

Facilitated enumeration of the silicate bacterium Paenibacillus mucilaginosus comb. nov. (formerly Bacillus mucilaginosus) via tetrazolium chloride incorporation into a double agar-based solid growth medium

  • Annie Vardanian
  • Eyal Kurzbaum
  • Yair Farber
  • Monica Butnariu
  • Robert Armon
Short Communication


Accurate enumeration of Paenibacillus mucilaginosus (formerly Bacillus mucilaginosus) bacterium from environmental samples on solid medium is challenging owing to its extensive extracellular polysaccharides (EPS) excretion. In the present study, P. mucilaginosus enumeration has been facilitated by a simple modification: addition of triphenyl tetrazolium chloride (TTC) to growth medium and application of a second soft agar layer. Results show distinctively better and accurate colonies’ count. This method can be applied to all bacterial species that produce excessive EPS that may interfere with direct count.


Funding information

This study has been supported by an internal fund (Micro Grants for the Technion Recycling Initiative, Technion, Israel).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Anonymous (2017) Biolog Inc.
  2. Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare pers.) grown under two alfisols. Plant Soil 317(1-2):235–255. CrossRefGoogle Scholar
  3. Beloti V, Barros MAF, Freitas JC, de Nero LA, Souza JA, de Santana EHW, Bernadette DGMF (1999) Frequency of 2, 3, 5-triphenyltetrazolium chloride (TTC) non-reducing bacteria in pasteurized milk. Rev Microbiol 30(2):137–140. CrossRefGoogle Scholar
  4. Deng SB, Bai RB, Hu XM, Luo Q (2003) Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment. Appl Microbiol Biotechnol 60(5):588–593. CrossRefPubMedGoogle Scholar
  5. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J lmmunol Meth 89(2):271–277. CrossRefGoogle Scholar
  6. Hu XF, Li SX, Wu JG, Wang JF, Fang QL, Chen JS (2010) Transfer of Bacillus mucilaginosus and Bacillus edaphicus to the genus Paenibacillus as Paenibacillus mucilaginosus comb. nov. and Paenibacillus edaphicus comb. nov. Int. J Syst Evol Microbiol 60(1):8–14. CrossRefGoogle Scholar
  7. Kurzbaum E, Kirzhner F, Armon R (2010) A simple method for dehydrogenase activity visualization of intact plant roots grown in soilless culture using tetrazolium violet. Plant Root 4:12–16. CrossRefGoogle Scholar
  8. Lemay MA, De Vriendt L, Pellerin S, Poulin M (2015) Ex situ germination as a method for seed viability assessment in a peatland orchid, Platanthera blephariglottis. Am J Bot 102(3):390–395. CrossRefPubMedGoogle Scholar
  9. Lian B, Chen Y, Yuan S, Zhu L, Liu C (2004) Study on the flocculability of metal ions by Bacillus mucilaginosus GY03 strain. Chin J Geochem 23:380–386CrossRefGoogle Scholar
  10. Lian B, Chen Y, Zhao J, Teng HH, Zhu L, Yuan S (2008) Microbial flocculation by Bacillus mucilaginosus: applications and mechanisms. Bioresour Technol 99(11):4825–4831. CrossRefPubMedGoogle Scholar
  11. Liu W, Xu X, Wu X, Yang Q, Luo Y, Christie P (2006) Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environ Geochem Health 28(1-2):133–140. CrossRefPubMedGoogle Scholar
  12. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:1655–1663CrossRefGoogle Scholar
  13. Pechmann HV, Runge P (1894) Oxydation der Formazylverbindungen. Ber Dtsch Chem Ges 27(3):2920–2930. CrossRefGoogle Scholar
  14. Sun D, Meng J, Liang H, Yang E, Huang Y, Chen W, Jiang L, Lan Y, Zhang W, Gao J (2015) Effect of volatile organic compounds absorbed to fresh biochar on survival of Bacillus mucilaginosus and structure of soil microbial communities. J Soils Sediments 15(2):271–281. CrossRefGoogle Scholar
  15. Tengerdy RP, Nagy JG, Martin B (1967) Quantitative measurement of bacterial growth by the reduction of tetrazolium salts. Appl Microbiol 15(4):954–955PubMedPubMedCentralGoogle Scholar
  16. Tsukatani T, Suenaga H, Higuchi T, Akao T, Ishiyama M, Ezoe K, Matsumoto K (2008) Colorimetric cell proliferation assay for microorganisms in microtiter plate using water-soluble tetrazolium salts. J Microbiol Methods 75(1):109–116. CrossRefPubMedGoogle Scholar
  17. Turner N, Sandine WE, Elliker PR, Day EA (1963) Use of tetrazolium dyes in an agar medium for differentiation of Streptococcus lactis and Streptococcus cremoris. J Dairy Sci 46(5):380–385. CrossRefGoogle Scholar
  18. Yang X, Li Y, Lu A, Wang H, Zhu Y, Ding H, Wang X (2016) Effect of Bacillus mucilaginosus D4B1 on the structure and soil-conservation-related properties of montmorillonite. App Clay Sci 119:141–145. CrossRefGoogle Scholar
  19. Yi Z, Lian B (2012) Adsorption of U (VI) by Bacillus mucilaginosus. J Radioanal Nucl Chem 293(1):321–329. CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2017

Authors and Affiliations

  1. 1.Faculty of Civil and Environmental EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
  2. 2.Shamir Research InstituteUniversity of HaifaQatzrinIsrael
  3. 3.Banat University of Agronomical Sciences and Veterinary MedicineTimișoaraRomania

Personalised recommendations