Folia Microbiologica

, Volume 63, Issue 2, pp 129–140 | Cite as

The current status of Aureobasidium pullulans in biotechnology

  • Sehanat Prasongsuk
  • Pongtharin Lotrakul
  • Imran Ali
  • Wichanee Bankeeree
  • Hunsa Punnapayak
Review paper


Different strains of the saprophytic yeast-like fungus Aureobasidium pullulans (Ascomycota: Dothideales) exhibit different biochemical characteristics, while their ubiquitous occurrence across diverse habitats and environmental conditions makes them an easily accessible source for biotechnological exploitation. They are useful in agricultural and industrial applications. Their antagonistic activities against postharvest pathogens make them suitable bioagents for the postharvest preservation of fruits and vegetables, while they possess antimicrobial activities against bacteria and fungi. Additionally, A. pullulans appears to be a potent source of single-cell protein. Many strains of A. pullulans harbor a wide range of industrially important enzymes, while the trademark exopolysaccharide pullulan that they produce has been extensively studied and is currently used in many applications. They also produce poly (β-l-malic acid), heavy oil liamocins, siderophore, and aubasidan-like β-glucan which are of interest for future applications. Ongoing studies suggest that A. pullulans holds many more interesting properties capable of further potential biotechnological applications.


Aureobasidium pullulans Postharvest control Antimicrobial potentials Enzymes Pullulan 



The authors thank the Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University for Plant Biomass Utilization Research Unit and Rachadapisek Sompote Fund for Postdoctoral Fellowship, Chulalongkorn University, for financial support.


  1. Bankeeree W, Lotrakul P, Prasongsuk S, Chaiareekij S, Eveleigh DE, Kim SW, Punnapayak H (2014) Effect of polyols on thermostability of xylanase from a tropical isolate of Aureobasidium pullulans and its application in prebleaching of rice straw pulp. Spring 3(1):1–11CrossRefGoogle Scholar
  2. Bankeeree W, Lotrakul P, Prasongsuk S, Chaiareekij S, Kim SW, Punnapayak H (2016) Enhanced production of cellulase-free thermoactive xylanase using corncob by a black yeast, Aureobasidium pullulans CBS 135684. Korean Chem Eng Res 54(6):822–829CrossRefGoogle Scholar
  3. Bencheqroun SK, Bajji M, Massart S, Labhilili M, El-Jafari S, Jijakli MH (2007) In vitro and in situ study of postharvest apple blue mold biocontrol by Aureobasidium pullulans: evidence for the involvement of competition for nutrients. Postharvest Biol Technol 46:128–135CrossRefGoogle Scholar
  4. Bender H, Lehmann J, Wallenfels K (1959) Pullulan, ein extracelluläres Glucan von Pullularia pullulans. Biochim Biophys Acta 36:309–316PubMedCrossRefGoogle Scholar
  5. Bischoff KM, Leathers TD, Price NP, Manitchotpisit P (2015) Liamocin oil from Aureobasidium pullulans has antibacterial activity with specificity for species of Streptococcus. J Antibiot 68:642–645PubMedCrossRefGoogle Scholar
  6. Cadez N, Zupan J, Raspor P (2010) The effect of fungicides on yeast communities associated with grape berries. FEMS Yeast Res 10:619–630PubMedGoogle Scholar
  7. Cao W, Chen X, Luo J, Yim J, Qiao C, Wan Y (2016) High molecular weight β-poly(L-malic acid) produced by Aureobasidium pullulans with Ca2+ added repeated batch culture. Int J Biol Macromol 85:192–199PubMedCrossRefGoogle Scholar
  8. Chan GF, Puad MSA, Chin CF, Rashid NAA (2011) Emergence of Aureobasidium pullulans as human fungal pathogen and molecular assay for future medical diagnosis. Folia Microbiol 56:459–467CrossRefGoogle Scholar
  9. Cheng KC, Demirci A, Catchmark JM (2011) Pullulan: biosynthesis, production, and applications. Appl Microbiol Biotechnol 92:29–44PubMedCrossRefGoogle Scholar
  10. Chi ZM, Liu ZM, Gao LM, Gong F, Ma CL, Wang XH, Li HF (2006) Marine yeasts and their applications in mariculture. J Ocean U China 5:251–256CrossRefGoogle Scholar
  11. Chi Z, Ma C, Wang P, Li H (2007) Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Bioresour Technol 98:534–538PubMedCrossRefGoogle Scholar
  12. Chi Z, Wang F, Chi Z, Yue L, Liu G, Zhang T (2009) Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl Microbiol Biotechnol 82:793–804PubMedCrossRefGoogle Scholar
  13. Chi Z, Wang XX, Ma ZC, Burdar MA, Chi ZM (2012) The unique role of siderophore in marine-derived Aureobasidium pullulans HN6.2. Biometals 25:219–230PubMedCrossRefGoogle Scholar
  14. Chi ZM, Yan KR, Gao LM, Li J, Wang XH, Wang L (2008) Diversity of marine yeasts with high protein content and evaluation of their nutritive compositions. J Mar Biol Assoc UK 88:1–6CrossRefGoogle Scholar
  15. Choi J-S, Kim JW, Jung G-W, Moon S-B, Cho H-R, Sung SH, Jung JJ, Kwon YS, SK K, Sohn J-H (2016) Effect of a β-glucan from Aureobasidium on TGF-β1-modulated in vitro dermal wound repair. Toxicol Environ Health Sci 8(1):12–18CrossRefGoogle Scholar
  16. Christov LP, Myburgh J, O'Neill FH, Van Tonder A, Prior BA (1999) Modification of the carbohydrate composition of sulfite pulp by purified and characterized β-xylanase and β-xylosidase of Aureobasidium pullulans. Biotechnol Prog 15:196–200PubMedCrossRefGoogle Scholar
  17. Cooke WB (1959) An ecological life history of Aureobasidium pullulans (De Bary) Arnaud. Mycopathol Mycol Appl 12:1–45PubMedCrossRefGoogle Scholar
  18. Crous PW, Summerell BA, Swart L, Denman S, Taylor JE, Bezuidenhout CM, Palm ME, Marincowitz S, Groenewald JZ (2011) Fungal pathogens of Proteaceae. Persoonia 27:20–45PubMedPubMedCentralCrossRefGoogle Scholar
  19. de Hoog GS, Yurlova NA (1994) Conidiogenesis, nutritional physiology and taxonomy of Aureobasidium and Hormonema. Antonie Van Leeuwenhoek 65:41–54PubMedCrossRefGoogle Scholar
  20. de Wet BJM, van Zyl WH, Prior BA (2006) Characterization of the Aureobasidium pullulans α-glucuronidase expressed in Saccharomyces cerevisiae. Enzym Microb Technol 38:649–656CrossRefGoogle Scholar
  21. Deshpande MS, Rale VB, Lynch JM (1992) Aureobasidium pullulans in applied microbiology: a status report. Enzym Microb Technol 14:514–527CrossRefGoogle Scholar
  22. Di Francesco A, Ugolini L, D’Aquino S, Pagnotta E, Mari M (2017) Biocontrol of Monilinia laxa by Aureobasidium pullulans strains: insights on competition for nutrients and space. Int J Food Microbiol 248:32–38PubMedCrossRefGoogle Scholar
  23. Dobberstein J, Emeis CC (1991) Purification and characterization of β-xylosidase from Aureobasidium pullulans. Appl Microbiol Biotechnol 35:210–215CrossRefGoogle Scholar
  24. Endo M, Takesako K, Kato I, Yamaguchi H (1997) Fungicidal action of aureobasidin A, a cyclic desipeptide antifungal antibiotic, against Saccharomyces cerevisiae. Antimicrob Agents Chemother 41:672–676PubMedPubMedCentralGoogle Scholar
  25. Gao LM, Chi ZM, Sheng J, Ni XM, Wang L (2007) Single-cell protein production from Jerusalem artichoke extract by a recently isolated marine yeast Cryptococcus aureus G7a and its nutritive analysis. Appl Microbiol Biotechnol 77:825–832PubMedCrossRefGoogle Scholar
  26. Gheorghe F, Marieta C, Paolo A (2008) Preparation and characterization of pH- and temperature-sensitive pullulan microspheres for controlled release of drugs. Biomaterials 29:2767–2775CrossRefGoogle Scholar
  27. Gostinčar C, Ohm RA, Kogej T, Sonjak S, Turk M, Zajc J, Zalar P, Grude M, Sun H, Han J, Sharma A, Chiniquy J, Ngan CY, Lipzen A, Barry K, Grigoriev IV, Gunde-Cimerman N (2014) Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics 15:549PubMedPubMedCentralCrossRefGoogle Scholar
  28. Gounga ME, SY X, Wang Z, Yang WG (2008) Effect of whey protein isolate-pullulan edible coatings on the quality and shelf-life of freshly roasted and freeze-dried Chinese chestnut. J Food Sci 73:151–161CrossRefGoogle Scholar
  29. Guar R, Singh R, Gupta M, Guar MK (2010) Aureobasidium pullulans, an economically important polymorphic yeast with special reference to pullulan. Afr J Biotechnol 9(47):7989–7997CrossRefGoogle Scholar
  30. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38:1599–1616CrossRefGoogle Scholar
  31. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzym Microb Technol 39:235–251CrossRefGoogle Scholar
  32. Hayashi S, Ohno T, Ito M, Yokoi H (2001) Purification and properties of the cell-associated β-xylosidase from Aureobasidium. J Ind Microbiol Biotechnol 26:276–279PubMedCrossRefGoogle Scholar
  33. Hermanides-Nijhof EJ (1977) Aureobasidium and allied genera. Stud Mycol 15:141–166Google Scholar
  34. Hirabayashi K, Kondo N, Hayashi S (2016) Characterization and enzymatic hydrolysis of hydrothermally treated β-1,3-1,6-glucan from Aureobasidium pullulans. World J Microbiol Biotechnol 32:206PubMedCrossRefGoogle Scholar
  35. Iembo T, da Silva R, Pagnocca FC, Gomes E (2002) Production, characterization, and properties of β-glucosidase and β-xylosidase from a strain of Aureobasidium sp. Appl Biochem Microbiol 38:549–552CrossRefGoogle Scholar
  36. Ippolito A, Ghaouth AE, Wilson CL, Wisniewski M (2000) Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biol Technol 19:265–272CrossRefGoogle Scholar
  37. Jiang Z, Zhu Y, Li L, Yu X, Kusakabe I, Kitaoka M, Hayashi K (2004) Transglycosylation reaction of xylanase B from the hyperthermophilic Thermotoga maritima with the ability of synthesis of tertiary alkyl β-d-xylobiosides and xylosides. J Biotechnol 114:125–134PubMedCrossRefGoogle Scholar
  38. Johnson L (2008) Iron and siderophores in fungal-host interactions. Mycol Res 112:170–183PubMedCrossRefGoogle Scholar
  39. Kalantar E, Deopurkar R, Kapadnis B (2005) Antistaphylococcal metabolite from Aureobasidium pullulans: production and characterization. Afr J Clin Exp Microbiol 6:177–187Google Scholar
  40. Kalantar E, Deopurkar R, Kapadnis B (2006) Antimicrobial activity of indigenous strains of Aureobasidium isolated from Santalum album leaves. Iran J Pharm Res 1:59–64Google Scholar
  41. Kandemir N, Yemenicioglu A, Mecitoglu C, Elmaci ZS, Arslanoglu A, Oksungur Y (2005) Production of antimicrobial films by incorporation of partially purified lysozyme into biodegradable films of crude exopolysaccharides obtained from Aureobasidium pullulans fermentation. Food Technol Biotechnol 43:343–350Google Scholar
  42. Kim JS, Lee IK, Yun BS (2015) A novel biosurfactant produced by Aureobasidium pullulans L3-GPY from a tiger lily wild flower, Lilium lancifolium Thunb. PLoS One 10(4):e0122917. PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kremnický L, Biely P (1997) β-Mannanolytic system of Aureobasidium pullulans. Arch Microbiol 167:350–355CrossRefGoogle Scholar
  44. Kudanga T, Mwenje E (2005) Extracellular cellulase production by tropical isolates of Aureobasidium pullulans. Microbiology 51:773–776Google Scholar
  45. Kurmar CG, Tagaki H (1999) Microbial alkaline protease: from bioindustrial viewpoint. Biotechnol Adv 17:561–594CrossRefGoogle Scholar
  46. Kurome T, Inami K, Inoue T, Ikai K, Takesako K, Kato I, Shiba T (1996) Total synthesis of an antifungal cyclic desipeptide aureobasidin A. Tetrahedron 52:4327–4346CrossRefGoogle Scholar
  47. Kurosawa T, Sakai K, Nakahara T, Oshima Y, Tabuchi T (1994) Extracellular accumulation of the polyol lipids, 3,5-dihydroxydecanoyl and 5-hydroxy-2-decenoyl esters of arabitol and mannitol, by Aureobasidium sp. Biosci Biotechnol Biochem 58:2057–2060CrossRefGoogle Scholar
  48. Leathers TD (1986) Colour variants of Aureobasidium pullulans overproduce xylanase with extremely high specific activity. Appl Environ Microbiol 52:1026–1030PubMedPubMedCentralGoogle Scholar
  49. Leathers TD (1993) Substrate regulation and specificity of amylase from Aureobasidium strain NRRL Y-12,974. FEMS Microbiol Lett 110:217–222CrossRefGoogle Scholar
  50. Leathers TD (2003) Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol 62:468–473PubMedCrossRefGoogle Scholar
  51. Leathers TD, Price NPJ, Manitchotpisit P, Bischoff KM (2016) Production of anti-streptococcal liamocins from agricultural biomass by Aureobasidium pullulans. World J Microbiol Biotechnol 32:199PubMedCrossRefGoogle Scholar
  52. Leathers TD, Rich JO, Anderson AM, Manitchotpisit P (2013) Lipase production by diverse phylogenetic clades of Aureobasidium pullulans. Biotechnol Lett 35:1701–1706PubMedCrossRefGoogle Scholar
  53. Leite RSR, Alves-Prado AF, Cabral H, Pagnoccab FC, Gomesa E, Da-Silva R (2008) Production and characteristics comparison of crude β-glucosidases produced by microorganisms Thermoascus aurantiacus and Aureobasidium pullulans in agricultural wastes. Enzym Microb Technol 43:391–395CrossRefGoogle Scholar
  54. Leite RSR, Gomes E, Da-Silva R (2007) Characterization and comparison of thermostability of purified β-glucosidases from a mesophilic Aureobasidium pullulans and a thermophilic Thermoascus aurantiacus. Process Biochem 42:1101–1106CrossRefGoogle Scholar
  55. Li HF, Chi ZM, Wang XH, Ma CL (2007) Amylase production by the marine yeast Aureobasidium pullulans N13d. J Ocean U China 6:61–66Google Scholar
  56. Lima G, Ippolito A, Nigro F, Salerno M (1997) Effectiveness of Aureobasidium pullulans and Candida oleophila against postharvest strawberry rots. Postharvest Biol Technol 10:169–178CrossRefGoogle Scholar
  57. Liu S, Steinbüchel A (1996) Investigation of poly (β-L-malic acid) production by strains of Aureobasidium pullulans. Appl Microbiol Biotechnol 46:273–278CrossRefGoogle Scholar
  58. Liu ZQ, Li XY, Chi ZM, Wang L, Li J, Wang XH (2008) Cloning, characterization and expression of the extracellular lipase gene from Aureobasidium pullulans HN2-3 isolated from sea saltern. Antonie Van Leeuwenhoek 94:245–255PubMedCrossRefGoogle Scholar
  59. Lotrakul P, Deenarn P, Prasongsuk H, Punnapayak H (2009) Isolation of Aureobasidium pullulans from bathroom surfaces and their antifungal activity against some Aspergilli. Afr J Microbiol Res 3:253–257Google Scholar
  60. Lotrakul P, Unhapattaratitikul P, Seelanan T, Prasongsuk S, Punnapayak H (2013) An aubasidan-like ß-glucan produced by Aureobasidium pullulans in Thailand. Sci Asia 39:363–368CrossRefGoogle Scholar
  61. Ma CL, Ni XM, Chi ZM, Ma LY, Gao LM (2007) Purification and characterization of an alkaline protease from the marine yeast Aureobasidium pullulans for bioactive peptide production from different sources. Mar Biotechnol 9:343–351PubMedCrossRefGoogle Scholar
  62. Ma CZ, Chi Z, Geng Q, Zheng F, Chi ZM (2012) Disruption of the pullulan synthetase gene in siderophore producing Aureobasidium pullulans enhances siderophore production and simplifies siderophore extraction. Process Biochem 47:1807–1812CrossRefGoogle Scholar
  63. Manitchotpisit P, Leathers TD, Peterson SW, Kurtzman CP, Li XL, Eveleigh DE, Lotrakul P, Prasongsuk S, Dunlap CA, Vermillion KE, Punnapayak H (2009) Multilocus phylogenetic analyses, pullulan production and xylanase activity of tropical isolates of Aureobasidium pullulans. Mycol Res 113:1107–1120PubMedCrossRefGoogle Scholar
  64. Manitchotpisit P, Price NPJ, Leathers TD, Punnapayak H (2011a) Heavy oils produced by Aureobasidium pullulans. Biotechnol Lett 33:1151–1157PubMedCrossRefGoogle Scholar
  65. Manitchotpisit P, Skory CD, Leathers TD, Lotrakul P, Eveleigh DE, Prasongsuk S, Punnapayak H (2011b) α-Amylase activity during pullulan production and α-amylase gene analyses of Aureobasidium pullulans. J Ind Microbiol Biotechnol 38:1211–1218PubMedCrossRefGoogle Scholar
  66. Manitchotpisit P, Skory CD, Peterson SW, Price NPJ, Vermillion KE, Leathers TD (2012) Poly (β-L-malic acid) production by diverse phylogenetic clades of Aureobasidium pullulans. J Ind Microbiol Biotechnol 39:125–132PubMedCrossRefGoogle Scholar
  67. Manitchotpisit P, Watanapoksin R, Price NPJ, Bischoff KM, Tayeh M, Teeraworawit S, Kriwong S, Leathers TD (2014) Aureobasidium pullulans as a source of liamocins (heavy oils) with anticancer activity. World J Microbiol Biotechnol 30:2199–2204PubMedCrossRefGoogle Scholar
  68. Mari M, Martini C, Guidarelli M, Neri F (2012) Postharvest biocontrol of Monilinia laxa, Monilinia fructicola and Monilinia fructigena on stone fruit by two Aureobasidium pullulans strains. Biol Control 60:132–140CrossRefGoogle Scholar
  69. Matsumura S, Sakiyama K, Toshima K (1997) One-pot synthesis of alkyl β-D-xylobioside from xylan and alcohol by acetone powder of Aureobasidium pullulans. Biotechnol Lett 19:1249–1253CrossRefGoogle Scholar
  70. McCormack PJ, Howard G, Jefferies P (1994) Production of antimicrobial compounds by phylloplane inhabiting yeasts and yeast like fungi. Appl Environ Microbiol 60:927–931PubMedPubMedCentralGoogle Scholar
  71. Na K, Lee DH, Hwang DJ, Park HS, Lee KH, Bae YH (2006) pH-sensitivity and pH-dependent structural change in polymeric nanoparticles of poly (vinyl sulfadimethoxine)-deoxycholic acid conjugate. Eur Polym J 42:2581–2588CrossRefGoogle Scholar
  72. Nagata N, Nakahara T, Tabuchi T (1993) Fermentative production of poly (β-L-malic acid), a polyelectrolytic biopolyester, by Aureobasidium sp. Biosci Biotechnol Biochem 57:638–642CrossRefGoogle Scholar
  73. Nakamura T, Toshima K, Matsumura S (2000) One-step synthesis of n-octyl β-D-xylotrioside, xylobioside and xyloside from xylan and n-octanol using acetone powder of Aureobasidium pullulans in supercritical fluids. Biotechnol Lett 22:1183–1189CrossRefGoogle Scholar
  74. Ni XM, Chi ZM, Liu ZQ, Yue LX (2008) Screening of protease producing marine yeasts for production of the bioactive peptides. Acta Oceanol Sin 27:1–10Google Scholar
  75. Nováková A, Hubka V, Valinová Š, Kolařík M, Hillebrand-Voiculescu AM (2017) Cultivable microscopic fungi from an underground chemosynthesis-based ecosystem: a preliminary study. Folia Microbiol.
  76. Ohta K, Fujimoto H, Fujii S, Wakiyama M (2010) Cell-associated beta-xylosidase from Aureobasidium pullulans ATCC 20524: purification, properties, and characterization of the encoding gene. J Biosci Bioeng 110:152–157PubMedCrossRefGoogle Scholar
  77. Papadopoulou E, Hatjiissaak A, Estrine B, Marinkovic S (2011) Novel use of biomass derived alkyl-xylosides in wetting agent for paper impregnation suitable for the wood-based industry. Eur J Wood Wood Prod 69:579–585CrossRefGoogle Scholar
  78. Peterson SW, Manitchotpisit P, Leathers TD (2013) Aureobasidium thailandense sp. nov. isolated from leaves and wooden surfaces. Int J Syst Evol Microbiol 63:790–795PubMedCrossRefGoogle Scholar
  79. Prajapati VD, Jani GK, Khanda SM (2013) Pullulan: an exopolysaccharide and its various applications. Carbohydr Polym 95:540–549PubMedCrossRefGoogle Scholar
  80. Prasongsuk S, Berhow MA, Dunlap CA, Weisleder LTD, Eveleigh DE, Punnapayak H (2007) Pullulan production by tropical isolates of Aureobasidium pullulans. J Ind Microbiol Biotechnol 34(1):55–61PubMedCrossRefGoogle Scholar
  81. Prasongsuk S, Ployngam S, Wacharasindhu S, Lotrakul P, Punnapayak H (2013) Effects of sugar and amino acid supplementation on Aureobasidium pullulans NRRL 58536 antifungal activity against four Aspergillus species. Appl Microbiol Biotechnol 97:7821–7830PubMedCrossRefGoogle Scholar
  82. Prasongsuk S, Sullivan RF, Kuhirun M, Eveleigh DE, Punnapayak H (2005) Thailand habitats as sources of pullulan-producing strains of Aureobasidium pullulans. World J Microbiol Biotechnol 21:393–398CrossRefGoogle Scholar
  83. Price NPJ, Manitchotpisit P, Vermillion KE, Bowman MJ, Leathers TD (2013) Structural characterization of novel extracellular liamocins (mannitol oils) produced by Aureobasidium pullulans strain NRRL 50380. Carbohydr Res 370:24–32PubMedCrossRefGoogle Scholar
  84. Punnapayak H, Sudhadham M, Prasongsuk S, Pichayangkura S (2003) Characterization of Aureobasidium pullulans isolated from airborne spores in Thailand. J Ind Microbiol Biotechnol 30:89–94PubMedCrossRefGoogle Scholar
  85. Ramos S, Garcia-Acha I (1975) Cell wall enzymatic lysis of the yeast form of Pullularia pullulans and wall regeneration by protoplasts. Arch Microbiol 104:271–277PubMedCrossRefGoogle Scholar
  86. Raspor P, Milek DM, Polanc J, Mozina SS, Cadez N (2006) Yeasts isolated from three varieties of grapes cultivated in different locations of the Dolenjska vine growing region, Slovenia. Int J Food Microbiol 109:97–102PubMedCrossRefGoogle Scholar
  87. Renouf V, Claisse O, Lonvaud-Funel A (2005) Understanding the microbial ecosystem on the berry surface through numeration and identification of yeast and bacteria. Aust J Grape Wine Res 11:316–327CrossRefGoogle Scholar
  88. Rich JO, Leathers TD, Anderson AM, Bischoff KM, Manitchotpisit P (2013) Laccases from Aureobasidium pullulans. Enzym Microb Technol 53:33–37CrossRefGoogle Scholar
  89. Rich JO, Manitchotpisit P, Peterson SW, Liu S, Leathers TD, Anderson AM (2016) Phylogenetic classification of Aureobasidium pullulans strains for production of feruloyl esterase. Biotechnol Lett 38:863–870PubMedCrossRefGoogle Scholar
  90. Saha BC, Bothast RJ (1993) Starch conversion by amylase from Aureobasidium pullulans. J Ind Microbiol 12(6):413–416CrossRefGoogle Scholar
  91. Schena L, Ippolito A, Zahavi T, Cohen L, Nigro F, Droby S (1999) Genetic diversity and biocontrol activity of Aureobasidium pullulans isolates against postharvest rots. Postharvest Biol Technol 17:189–199CrossRefGoogle Scholar
  92. Schena L, Nigro F, Pentimone I, Ligorio A, Ippolito A (2003) Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biol Technol 30:209–220CrossRefGoogle Scholar
  93. Takesako K, Ikai K, Haruna F, Endo M, Shimanaka K, Sona K, Nakamura T, Kato I, Yamaguchi H (1991) Aureobasidins, new antifungal antibiotics, taxonomy, fermentation, isolation and properties. J Antibiot 44:919–924PubMedCrossRefGoogle Scholar
  94. Takesako K, Kuroda H, Inoue T, Haruna F, Yoshikawa Y, Kato I, Uchida K, Hiratani T, Yamaguchi H (1993) Biological properties of aureobasidin A, a cyclic depsipeptide antifungal antibiotic. J Antibiot 46(9):1414–1420PubMedCrossRefGoogle Scholar
  95. Thambugala K, Ariyawansa H, Li Y-M, Boonmee S, Hongsanan S, Tian Q, Singtripop C, Bhat DJ, Camporesi E, Jayawardena R, Liu Z-Y, J-C X, Chukeatirote E, Hyde K (2014) Dothideales. Fungal Divers 68(1):105–158CrossRefGoogle Scholar
  96. Vadkertiová R, Molnárová J, Lux A, Vaculík M, Lišková D (2016) Yeast associated with an abandoned mining area in Pernek and their tolerance to different chemical elements. Folia Microbiol 61:199–207CrossRefGoogle Scholar
  97. Viala P, Boyer G (1891) Sur un Basidiomycète inferérieur, parasite des grains de raisins. Comptes Rendues Hebdomaires des Séances de l’Académie de Sciences, Paris 112:1148–1150Google Scholar
  98. Wachowska U, Głowacka K, Mikołajczyk KK (2016) Biofilm of Aureobasidium pullulans var. pullulans on winter wheat kernels and its effect on other microorganisms. Microbiology 85(5):523–530CrossRefGoogle Scholar
  99. Wallenfels K, Bender H, Keilich G, Bechtler G (1961) On pullulan, the glucan of the slime coat of Pullularia pullulans. Angew Chem 73:245–246CrossRefGoogle Scholar
  100. Wang WL, Chi ZM, Chi Z, Li J, Wang XH (2009a) Siderophore production by the marine-derived Aureobasidium pullulans and its antimicrobial activity. Bioresour Technol 100(9):2639–2641PubMedCrossRefGoogle Scholar
  101. Wang W, Chi Z, Liu G, Burdar MA, Chi Z, Gu Q (2009b) Chemical and biological characterization of siderophore produced by the marine-derived Aureobasidium pullulans HN6.2 and its antimicrobial activity. Biometals 22:965–972PubMedCrossRefGoogle Scholar
  102. Wang Y, Song X, Zhang Y, Wang B, Zou X (2016) Effects of nitrogen availability on polymalic acid biosynthesis in the yeast-like fungus Aureobasidium pullulans. Microb Cell Factories 15:146CrossRefGoogle Scholar
  103. Wei P, Cheng C, Lin M, Zhou Y, Yang S-T (2017) Production of poly(malic acid) from sugarcane juice in fermentation by Aureobasidium pullulans: kinetics and process economics. Bioresour Technol 224:581–589PubMedCrossRefGoogle Scholar
  104. West TP (2011) Pullulan production by Aureobasidium pullulans cells immobilized in chitosan beads. Folia Microbiol 56:335–338CrossRefGoogle Scholar
  105. Xi K, Tabata Y, Uno K, Yoshimoto M, Kishida T, Sokawa Y, Ikada Y (1996) Liver targeting of interferon through pullulan conjugation. Pharm Res 13:1846–1850PubMedCrossRefGoogle Scholar
  106. Xia J, Xu J, Hu L, Liu X (2016) Enhanced poly(L-malic acid) production from pretreated cane molasses by Aureobasidium pullulans in fed-batch fermentation. Prep Biochem Biotechnol 46(8):798–802PubMedCrossRefGoogle Scholar
  107. Yanwisetpakdee B, Lotrakul P, Prasongsuk S, Seelanan T, White JF, Eveleigh DE, Kim SW, Punnapayak H (2016) Associations among halotolerance, osmotolerance and exoplysaccharide production of Aureobasidium melanogenum strains from habitats under salt stress. Pak J Bot 48(3):1229–1239Google Scholar
  108. Yegin S, Buyukkileci AO, Sargin S, Goksungur Y (2017) Exploitation of agricultural wastes and by-products for production of Aureobasidium pullulans Y-2311-1 xylanase: screening, bioprocess optimization and scale up. Waste Biomass Valorization 8:999–1010CrossRefGoogle Scholar
  109. Yu X, Yang R, Gu Z, Lai S, Yang H (2014) Anti-tumor and immunostimulatory functions of two feruloyl oligosaccharides produced from wheat bran and fermented by Aureobasidium pullulans. Bioresources 9(4):6778–6790CrossRefGoogle Scholar
  110. Yu X, Yang R, Gu Z, Lai S (2015) Antioxidant activity in vivo and in vitro of two feruloyl oligosaccharides preparations produced from wheat bran and fermented by Aureobasidium pullulans. Bioresources 10(2):2167–2176Google Scholar
  111. Yurlova NA, de Hoog GH (1997) A new variety of Aureobasidium pullulans characterized by exopolysaccharide structure, nutritional physiology and molecular features. Antonie Van Leeuwenhoek 72:141–147PubMedCrossRefGoogle Scholar
  112. Zain ME, Awaad AS, Razak AA, Maitland DJ, Khamis NE, Sakhawy MA (2009) Secondary metabolites of Aureobasidium pullulans isolated from Egyptian soil and their biological activity. J Appl Sci Res 5:1582–1591Google Scholar
  113. Zalar P, Gostinčar C, de Hoog GS, Uršič V, Sudhadham M, Gunde-Cimerman N (2008) Redefinition of Aureobasidium pullulans and its varieties. Stud Mycol 61:21–38PubMedPubMedCentralCrossRefGoogle Scholar
  114. Zhang L, Chi ZM (2007) Screening and identification of a cellulase producing marine yeast and medium and fermentation condition optimization for cellulase production. J Ocean U China Sup II 37:101–108Google Scholar
  115. Zhang DP, Spadaro D, Garibaldi A, Gullino ML (2010) Efficacy of the antagonist Aureobasidium pullulans PL5 against postharvest pathogens of peach, apple and plum and its modes of action. Biol Control 54:172–180CrossRefGoogle Scholar
  116. Zou X, Zhou Y, Yang ST (2013) Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis. Biotechnol Bioeng 110:2105–2113PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2017

Authors and Affiliations

  • Sehanat Prasongsuk
    • 1
  • Pongtharin Lotrakul
    • 1
  • Imran Ali
    • 1
    • 3
  • Wichanee Bankeeree
    • 1
  • Hunsa Punnapayak
    • 1
    • 2
  1. 1.Plant Biomass Utilization Research Unit, Department of Botany, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  2. 2.Department of Biology, Faculty of Science and TechnologyUniversitas AirlanggaSurabayaIndonesia
  3. 3.Institute of BiochemistryUniversity of BalochistanQuettaPakistan

Personalised recommendations