Skip to main content
Log in

Molecular characterization of β-fructofuranosidases from Rhizopus delemar and Amylomyces rouxii

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Of the 19 strains of Rhizopus delemar deposited as Rhizopus oryzae, seven of them, NBRC 4726, NBRC 4734, NBRC 4746, NBRC 4754, NBRC 4773, NBRC 4775, and NBRC 4801, completely hydrolyzed exogenous sucrose and fructooligosaccharides. The sucrose-hydrolyzing enzyme was purified from the culture filtrate of R. delemar NBRC 4754 and classified to β-fructofuranosidase, similar to that of Amylomyces rouxii CBS 438.76. Fragments including β-fructofuranosidase genes (sucA) of seven strains of R. delemar and A. rouxii CBS 438.76 were amplified and sequenced by PCR with degenerated primers synthesized on the basis of the internal amino acid sequences of purified enzymes and successive inverse PCR. Nucleotide sequences of the obtained fragments revealed that open reading frames of 1,569 bp have no intron and encode 522 amino acids. The presumed proteins contained the typical domain of the glycoside hydrolase 32 family, including β-fructofuranosidase, inulinase, levanase, and fructosyltransferases. Amino acid sequences of SucA proteins from the seven strains of R. delemar were identical and showed 90.0 % identity with those of A. rouxii CBS 438.76. A dendrogram constructed from these amino acid sequences showed that SucA proteins are more closely related to yeast β-fructofuranosidases than to other fungal enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe A, Oda Y, Asano K, Sone T (2007) Rhizopus delemar is the proper name for Rhizopus oryzae fumaric-malic acid producers. Mycologia 99:714–722

    Article  PubMed  CAS  Google Scholar 

  • Alméciga-Díaz CJ, Gutierrez AM, Bahamon I, Rodríguez A, Rodríguez MA, Sánchez OF (2011) Computational analysis of the fructosyltransferase enzymes in plants, fungi and bacteria. Gene 484:26–34

    Article  PubMed  Google Scholar 

  • Battaglia E, Benoit I, van den Brink J, Wiebenga A, Coutinho PM, Henrissat B, de Vries RP (2011) Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level. BMC Genomics 12:38

    Article  PubMed  CAS  Google Scholar 

  • Bernfeld P (1955) Amylases, α and β. Methods Enzymol 1:149–158

    Article  CAS  Google Scholar 

  • Bulut S, Elibol M, Ozer D (2004) Effect of different carbon sources on L(+)-lactic acid production by Rhizopus oryzae. Biochem Eng J 21:33–37

    Article  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  PubMed  CAS  Google Scholar 

  • Ellis JJ, Rhodes LJ, Hesseltine CW (1976) The genus Amylomyces. Mycologia 68:131–143

    Article  CAS  Google Scholar 

  • Ghosh B, Ray RR (2011) Current commercial perspective of Rhizopus oryzae: a review. J Appl Sci 11:2470–2486

    Article  Google Scholar 

  • Ghosh K, Dhar A, Samanta TB (2001) Purification and characterization of an invertase produced by Aspergillus ochraceus TS. Indian J Biochem Biophys 38:180–185

    PubMed  CAS  Google Scholar 

  • Guio F, Rodriguez MA, Alméciga-Diaz CJ, Sánchez OF (2009) Recent trends in fructooligosaccharides production. Recent Pat Food Nutr Agric 1:221–230

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Yan QJ, Jiang ZQ, Teng C, Wang XL (2010) Efficient production of lactic acid from sucrose and corncob hydrolysate by a newly isolated Rhizopus oryzae GY18. J Ind Microbiol Biotechnol 37:1137–1143

    Article  PubMed  CAS  Google Scholar 

  • Hesseltine CW (1983) Microbiology of oriental fermented foods. Ann Rev Microbiol 37:575–601

    Article  CAS  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2009) Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production. Biotechnol Adv 27:145–152

    Article  PubMed  CAS  Google Scholar 

  • Kito H, Abe A, Sujaya IN, Oda Y, Asano K, Sone T (2009) Molecular characterization of the relationships among Amylomyces rouxii, Rhizopus oryzae, and Rhizopus delemar. Biosci Biotechnol Biochem 73:861–864

    Article  PubMed  CAS  Google Scholar 

  • Klein RD, Poorman RA, Favreau MA, Shea MH, Hatzenbuhler NT, Nulf SC (1989) Cloning and sequence analysis of the gene encoding invertase from the yeast Schwanniomyces occidentalis. Curr Genet 16:145–152

    Article  PubMed  CAS  Google Scholar 

  • Lateef A, Oloke JK, Kana EBG, Oyeniyi SO, Onifade OR, Oyeleye AO, Oladosu OC (2008) Rhizopus stolonifer LAU 07: a novel source of fructosyltransferase. Chem Pap 62:635–638

    Article  CAS  Google Scholar 

  • Mertens JA, Skory CD (2007) Isolation and characterization of a second glucoamylase gene without a starch binding domain from Rhizopus oryzae. Enzyme Microb Technol 40:874–880

    Article  CAS  Google Scholar 

  • Nakamura T, Shitara A, Matsuda S, Matsuo T, Suiko M, Ohta K (1997) Production, purification and properties of an endoinulinase of Penicillium sp. TN-88 that liberates inulotriose. J Ferment Bioeng 84:313–318

    Article  CAS  Google Scholar 

  • Naumova ES, Serpova EV, Korshunova IV, Naumov GI (2011) Molecular polymorphism of α-galactosidase MEL genes of Saccharomyces yeasts. Microbiology 80:502–513

    Article  CAS  Google Scholar 

  • Oda Y, Ouchi K (1991) Construction of a sucrose-fermenting bakers' yeast incapable of hydrolysing fructooligosaccharides. Enzyme Microb Technol 13:495–498

    Article  PubMed  CAS  Google Scholar 

  • Oda Y, Yajima Y, Kinoshita M, Ohnishi M (2003) Differences of Rhizopus oryzae strains in organic acid synthesis and fatty acid composition. Food Microbiol 20:371–375

    Article  CAS  Google Scholar 

  • Ohta K, Suetsugu N, Nakamura T (2002) Purification and properties of an extracellular inulinase from Rhizopus sp. strain TN-96. J Biosci Bioeng 94:78–80

    PubMed  CAS  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Rehms H, Barz W (1995) Degradation of stachyose, raffinose, melibiose and sucrose by different tempe-producing Rhizopus fungi. Appl Microbiol Biotechnol 44:47–52

    Article  PubMed  CAS  Google Scholar 

  • Roa Engel CA, Straathof AJ, Zijlmans TW, van Gulik WM, van der Wielen LA (2008) Fumaric acid production by fermentation. Appl Microbiol Biotechnol 78:379–389

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Herrera J, González-Prieto JM, Ruiz-Medrano R (2002) Evolution and phylogenetic relationships of chitin synthases from yeasts and fungi. FEMS Yeast Res 1:247–256

    Article  PubMed  CAS  Google Scholar 

  • Sabater-Molina M, Larque E, Torrella F, Zamora S (2009) Dietary fructooligosaccharides and potential benefits on health. J Physiol Biochem 65:315–328

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Saito A, Ohnishi M, Oda Y (2004) Genetic diversity in Rhizopus oryzae strains as revealed by the sequence of lactate dehydrogenase genes. Arch Microbiol 182:30–36

    Article  PubMed  CAS  Google Scholar 

  • Schipper MAA (1983) A revision of the genus Rhizopus. I. The Rhizopus stronifer-group and Rhizopus oryzae. Stud Mycol 25:1–19

    Google Scholar 

  • Schipper MAA, Stalpers JA (1984) A revision of the genus Rhizopus. II. The Rhizpopus microsporus-group. Stud Mycol 25:20–34

    Google Scholar 

  • Severo CB, Guazzelli LS, Severo LC (2010) Chapter 7: Zygomycosis. J Bras Pneumol 36:134–141

    Article  PubMed  Google Scholar 

  • Sharifia M, Karimi K, Taherzadeh MJ (2008) Production of ethanol by filamentous and yeast-like forms of Mucor indicus from fructose, glucose, sucrose, and molasses. J Ind Microbiol Biotechnol 35:1253–1259

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Uma C, Gomathi D, Muthulakshmi C, Gopalakrishnan VK (2010) Production, purification and characteriation of invertase by Aspergillus flavus using fruit peel waste as substrate. Adv Biol Res 4:31–36

    CAS  Google Scholar 

  • Vially G, Marchal R, Guilbert N (2010) L(+) Lactate production from carbohydrates and lignocellulosic materials by Rhizopus oryzae UMIP 4.77. World J Microbiol Biotechnol 26:607–614

    Article  CAS  Google Scholar 

  • Watanabe T, Oda Y (2008) Comparison of sucrose-hydrolyzing enzymes produced by Rhizopus oryzae and Amylomyces rouxii. Biosci Biotechnol Biochem 72:3167–3173

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank T. Watanabe, K. Sakai, and Y. Nasu for their technical assistance. This study was supported in part by a grant from the Ministry of Agriculture, Forestry, and Fisheries of Japan (MAFF) Rural Bio-Mass Research Project (BUM-Cm1200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Oda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPT 204 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orikasa, Y., Oda, Y. Molecular characterization of β-fructofuranosidases from Rhizopus delemar and Amylomyces rouxii . Folia Microbiol 58, 301–309 (2013). https://doi.org/10.1007/s12223-012-0211-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-012-0211-9

Keywords

Navigation