Application of Acoustical Method to Characterize Nonwoven Material

Abstract

Some structural parameters, such as tortuosity, viscous and thermal characteristic lengths, are difficult to obtain through direct measurements. Existing indirect methods, i.e. acoustical method, make it possible to estimate these parameters. This paper presents an application of acoustical inversion methods for estimating structural parameters of polyester nonwoven materials. A four-microphone impedance tube was used to measure sound reflection and transmission coefficients. The inversion methods used in this research are least square and Bayesian approaches. The least square method was achieved via Nelder-Mead algorithm. The Bayesian inversion process was conducted with Metropolis-Hastings algorithm and maximum a posteriori. Inversed parameters from two methods as well as front and back sides of nonwoven fabric were compared. Moreover, inversed porosity and airflow resistivity were compared with measured values. The results show that the least square and Bayesian methods has a good agreement. Estimated parameters from Bayesian method were selected for further analysis. A sizable differences on thermal characteristic length were found by comparing the values from two sides, while the differences are relatively small for other parameters. It is also found that the inversed porosity, tortuosity are reasonable. The results suggest that the acoustical inversion methods can be used to accurately characterize polyester fibrous materials.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    X. Sagartzazu, L. Hervella-Nieto, and J. M. Pagalday, Arch. Comput. Meth. Eng., 15, 311 (2008).

    Article  Google Scholar 

  2. 2.

    ASTM D1777-96, Standard Test Method for Thickness of Textile Materials, 2015.

  3. 3.

    ASTM C830-00, Standard Test Methods for Apparent Porosity, Liquid Absorption, Apparent Specific Gravity, and Bulk Density of Refractory Shapes by Vacuum Pressure, 2000.

  4. 4.

    ISO 9053, Acoustics — Materials for Acoustical Applications — Determination of Airflow Resistance, 1991.

  5. 5.

    Y. Xue, J. S. Bolton, R. Gerdes, S. Lee, and T. Herdtle, Appl. Acoust., 134, 145 (2018).

    Article  Google Scholar 

  6. 6.

    T. Yang, R. Mishra, K. V. Horoshenkov, A. Hurrell, F. Saati, and X. Xiong, Appl. Acoust., 139, 75 (2018).

    Article  Google Scholar 

  7. 7.

    T. Yang, F. Saati, K. V. Horoshenkov, X. Xiong, K. Yang, R. Mishra, S. Marburg, and J. Militk, Text. Res. J., 89, 3342 (2019).

    CAS  Article  Google Scholar 

  8. 8.

    C. J. Gommes, S. Blacher, J. H. Dunsmuir, and A. H. Tsou, AIChE J, 55, 2000 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    R. Panneton, J. Acoust. Soc. Am., 122, EL217 (2007).

    Article  Google Scholar 

  10. 10.

    R. Panneton and X. Olny, J. Acoust. Soc. Am., 119, 2027 (2006).

    Article  Google Scholar 

  11. 11.

    X. Olny and R. Panneton, J. Acoust. Soc. Am., 123, 814 (2008).

    CAS  Article  Google Scholar 

  12. 12.

    Z. E. A. Fellah, S. Berger, W. Lauriks, C. Depollier, C. Aristégui, and J.-Y. Chapelon, J. Acoust. Soc. Am., 113, 2424 (2003).

    CAS  Article  Google Scholar 

  13. 13.

    Z. E. A. Fellah, F. G. Mitri, M. Fellah, E. Ogam, and C. Depollier, J. Sound Vib., 302, 746 (2007).

    Article  Google Scholar 

  14. 14.

    M. Sadouki, M. Fellah, Z. E. A. Fellah, E. Ogam, N. Sebaa, F. G. Mitri, and C. Depollier, J. Acoust. Soc. Am., 130, 2627 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    M. Niskanen, J.-P. Groby, A. Duclos, O. Dazel, J. C. Roux, N. Poulain, T. Huttunen, and T. Lähivaara, J. Acoust. Soc. Am., 142, 2407 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    M. E. Delany and E. N. Bazley, Appl. Acoust., 3, 105 (1970).

    Article  Google Scholar 

  17. 17.

    Y. Miki, J. Acoust. Soc. Jpn., 11, 19 (1990).

    Article  Google Scholar 

  18. 18.

    M. Garai and F. Pompoli, Appl. Acoust., 66, 1383 (2005).

    Article  Google Scholar 

  19. 19.

    D. L. Johnson, J. Koplik, and R. Dashen, J. Fluid Mech., 176, 379 (1987).

    CAS  Article  Google Scholar 

  20. 20.

    Y. Champoux and J. F. Allard, J. Appl. Phys., 70, 1975 (1991).

    Article  Google Scholar 

  21. 21.

    D. Lafarge, P. Lemarinier, J. F. Allard, and V. Tarnow, J. Acoust. Soc. Am., 102, 1995 (1997).

    Article  Google Scholar 

  22. 22.

    A. I. Hurrell, K. V. Horoshenkov, and M. T. Pelegrinis, Appl. Acoust., 130, 230 (2018).

    Article  Google Scholar 

  23. 23.

    J. Alba, D. R. Romina, J. Ramis, and J. P. Arenas, Arch. Acoust., 36, 561 (2011).

    Article  Google Scholar 

  24. 24.

    N. Voronina, Appl. Acoust., 42, 165 (1994).

    Article  Google Scholar 

  25. 25.

    P. V. Bansod and A. R. Mohanty, Appl. Acoust., 112, 41 (2016).

    Article  Google Scholar 

  26. 26.

    T. Yang, X. Xiong, R. Mishra, J. Novák, and J. Militký, Text. Res. J., 89, 612 (2019).

    CAS  Article  Google Scholar 

  27. 27.

    O. Jirsak and L. Wadsworth, “Nonwoven Textiles”, Durham, NC: Carolina Academic Pr, 1999.

    Google Scholar 

  28. 28.

    J. D. McRae, H. E. Naguib, and N. Atalla, J. Appl. Polym. Sci., 116, 1106 (2010).

    CAS  Google Scholar 

  29. 29.

    ISO 9053, Acoustics — Materials for Acoustical Applications Determination of Airflow Resistance, 1991.

  30. 30.

    J.-P. Groby, E. Ogam, L. De Ryck, N. Sebaa, and W. Lauriks, J. Acoust. Soc. Am., 127, 764 (2010).

    Article  Google Scholar 

  31. 31.

    D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B, 65, 195104 (2002).

    Article  Google Scholar 

  32. 32.

    C. Zwikker and C. W. Kosten, “Sound Absorbing Materials”, Elsevier, New York, 1949.

    Google Scholar 

  33. 33.

    J. A. Nelder and R. Mead, Comput. J., 7, 308 (1965).

    Article  Google Scholar 

  34. 34.

    T. Cox and P. d’Antonio, “Acoustic Absorbers and Diffusers”, 3rd ed., p.205, Theory, Design and Application, 2018.

  35. 35.

    Vallabh, P. Banks-Lee, and A. F. Seyam, J. Eng. Fibers and Fabrics, 5, 7 (2010).

    CAS  Google Scholar 

  36. 36.

    K. Attenborough, Acta Acust., 1, 213 (1993).

    Google Scholar 

  37. 37.

    J. G. Berryman, Appl. Phys. Lett., 37, 382 (1980).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the support from the Laboratoire d’Acoustique de l’Université du Maine (LAUM). This article is based upon work from COST Action DENORMS CA15125, supported by COST (European Cooperation in Science and Technology), the research project of Student Grant Competition of Technical University of Liberec no. 21244/115 granted by the Ministry of Education, Youth and Sports of the Czech Republic, and the European Union (European Structural and Investment Funds — Operational Programme Research, Development and Education) in the frames of the project “Modular platform for autonomous chassis of specialized electric vehicles for freight and equipment transportation”, Reg. No. CZ.02.1.01/0.0/0.0/16_025/0007293. T. Yang would like to thank Mr. Jean-Philippe Groby for his altruistic guide on this work. T. Yang would like to thank Prof. Kirill V Horoshenkov, Mr. Alistair I. Hurrell and Mr. Mohan Jiao for their support on the airflow resistivity measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tao Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Xiong, X., Wang, Y. et al. Application of Acoustical Method to Characterize Nonwoven Material. Fibers Polym (2021). https://doi.org/10.1007/s12221-021-9958-4

Download citation

Keywords

  • Acoustic
  • Inversion
  • JCAL
  • Model
  • Polyester
  • Nonwoven