Investigation of the In-Plane Shear and Interlaminar Shear in Woven Roving Composites

Abstract

In this paper a computational and experimental study to determine the in plane and interlaminar shearing stress-strain response of a composite material is performed. It is known that the above mentioned shear properties can be directly determined from shear and torsion experiments but also can indirectly be determined from bending and tension experiments respectively. The test methods used are the tension of ±45 off-axis woven fabric carbon fibers and epoxy resin matrix and the short beam bending test of the same material. Then calculations with finite elements and some analytical calculations were held for the in-plane and interlaminar shear. Comparison among the results was made. Thus, a main goal which was the combination of three major research methods was attained.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. E. Ashton, J. C. Halpin, and P. H. Petit., “Primer on Composite Materials: Analysis”, Stamford, Conn., Technomic Pub. Co., 1969.

    Google Scholar 

  2. 2.

    J. M. Whitney, C. E. Browning, and A. Mair, “Analysis of the Flexure Test for Laminated Composite Materials”, p.30, Comp. Materials: Testing and Design ASTM STP 546, 1974.

  3. 3.

    R. L. Sierakowski and I. K. Ebcioglu, J. Comp. Mater., 4, 144 (1970).

    Article  Google Scholar 

  4. 4.

    C. Berg, J. Tirosh, and M. Israeli, “Analysis of Short Beam Bending of Fiber Reinforced Composites”, p.206, Comp. Materials: Testing and Design ASTM STP 497, 1972.

  5. 5.

    K. Hiroaki and N. Tohru, JSME Int. J., SeriesA: Mech. Mat Eng., 36, 73 (1993).

    Google Scholar 

  6. 6.

    Ü. Esendemir, M. R. Usal, and M. Usal, J. Reinf. Plast. Comp., 25, 835 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    M. R. Usal, M. Usal, and Ü. Esendemir, J. Reinf. Plast. Comp., 27, 263 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    K. A. Eckrote, C. J. Burstone, M. A. Freilich, G. E. Messer, and A. J. Goldberg, J. Dent. Res., 82, 262 (2003).

    CAS  Article  Google Scholar 

  9. 9.

    R. F. Gibson, J. Sand. Str. Mat., 13, 579 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    E. E. Theotokoglou and E. Sideridis, J. Reinf. Plast. Comp., 30, 1125 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    S. L. Bai, V. Djafari, M. Andreanib, and D. François, Compos. Sci. Technol., 55, 343 (1995).

    CAS  Article  Google Scholar 

  12. 12.

    C. Nightingale and R. J. Day, Compos. Part A: Appl. Sci. Manuf., 33, 1021 (2002).

    Article  Google Scholar 

  13. 13.

    Z. Fan, M. H. Santare, and S. G. Advani, Compos. Part A: Appl. Sci. Manuf., 39, 540 (2008).

    Article  Google Scholar 

  14. 14.

    V. Cesen and M. Sarikanat, J. Appl. Polym. Sci., 107, 1822 (2008).

    Article  Google Scholar 

  15. 15.

    E. Sideridis and G. A. Papadopoulos, J. Appl. Polym. Sci., 93, 63 (2004).

    CAS  Article  Google Scholar 

  16. 16.

    K. C. Shekar, B. A. Prasad, and N. E. Prasad, Procedia. Mat. Sci., 6, 1336 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    V. C. S. Chandrasekaran, S. G. Advani, and M. H. Santare, Carbon, 48, 3692 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    X. Wang, X. Zhao, Z. Wu, Z. Zhu, and Z. Wang, J. Comp. Mat., 50, 1073 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Y. He and A. Makeev, Int. J. Solids Struct., 51, 1263 (2014).

    Article  Google Scholar 

  20. 20.

    S. B. Singh, S. Vummadisetti, and H. Chawla, J. Struct. Eng., 46, 146 (2019).

    Google Scholar 

  21. 21.

    G. B. McKenna, Polymer-Plastics Technol. Eng., 5, 23 (1975).

    Article  Google Scholar 

  22. 22.

    C. C. Chiao, R. L. Moore, and T. T. Chiao, Composites, 8, 161 (1977).

    CAS  Article  Google Scholar 

  23. 23.

    D. F. Adams and D. E. Walrath, Exp. Mech., 27, 113 (1987).

    Article  Google Scholar 

  24. 24.

    P. G. Ifju and D. Post, Exp. Techn., 15, 45 (1991).

    Article  Google Scholar 

  25. 25.

    D. Post, F. Dai, Y. Guo, and P. Ifju, J. Comp. Mat., 23, 264 (1989).

    Article  Google Scholar 

  26. 26.

    J. M. Whitney and C. E. Browning, Exp. Mech., 25, 294 (1985).

    Article  Google Scholar 

  27. 27.

    D. F. Sims and J. C. Halpin, “Methods for Determining the Elastic and Viscoelastic Response of Composite Materials”, Composite Materials: Testing and Design [Third Conference], ASTM STP 546, American Society for Testing and Materials, 46 (1974).

  28. 28.

    L. Gia-Ju, “Test Methods for In-plane Shear Modulus G12 and Transverse Shear Modulus G13 and G23”, Advances in Comp. Materials Proceedings of third Int. Conference on Comp. Mater., Paris, France, 1, 914 (1980).

    Google Scholar 

  29. 29.

    P. H. Petit, “A Simplified Method of Determining the In Plane Shear Stress — Strain Response of Unidirectional Composites”, ASTM STP 460, 83 (1969).

    Google Scholar 

  30. 30.

    B. W. Rosen, J. Comp. Mat., 6, 552 (1972).

    CAS  Article  Google Scholar 

  31. 31.

    ASTM D2344/D2344M-16, ASTM International, West Conshohocken, PA, USA, 2016.

  32. 32.

    NASTRAN Quick Reference Guide, MSC Software Corp., Newport Beach, CA, 2012.

  33. 33.

    N. T. Kamar, M. M. Hossarn, A. Khomenko, M. Haq, L. T. Drzal, and A. Loss, Comp. Part A: Appl. Sci. Manuf., 70, 82 (2015).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Manufacturing and Testing of specimens were performed in collaboration with Hellenic Aerospace Industry S.A. and Composites Testing Laboratory, Ireland in the frame of a European Space Agency funded project (Space-RTM).

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Strapatsakis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Strapatsakis, S., Theotokoglou, E.E. & Sideridis, E. Investigation of the In-Plane Shear and Interlaminar Shear in Woven Roving Composites. Fibers Polym 22, 264–275 (2021). https://doi.org/10.1007/s12221-021-9379-4

Download citation

Keywords

  • Woven roving composites
  • Interlaminar shear
  • Composite material
  • Experimental study
  • Finite element analysis