Abstract
In this paper a computational and experimental study to determine the in plane and interlaminar shearing stress-strain response of a composite material is performed. It is known that the above mentioned shear properties can be directly determined from shear and torsion experiments but also can indirectly be determined from bending and tension experiments respectively. The test methods used are the tension of ±45 off-axis woven fabric carbon fibers and epoxy resin matrix and the short beam bending test of the same material. Then calculations with finite elements and some analytical calculations were held for the in-plane and interlaminar shear. Comparison among the results was made. Thus, a main goal which was the combination of three major research methods was attained.
This is a preview of subscription content, access via your institution.
References
- 1.
J. E. Ashton, J. C. Halpin, and P. H. Petit., “Primer on Composite Materials: Analysis”, Stamford, Conn., Technomic Pub. Co., 1969.
- 2.
J. M. Whitney, C. E. Browning, and A. Mair, “Analysis of the Flexure Test for Laminated Composite Materials”, p.30, Comp. Materials: Testing and Design ASTM STP 546, 1974.
- 3.
R. L. Sierakowski and I. K. Ebcioglu, J. Comp. Mater., 4, 144 (1970).
- 4.
C. Berg, J. Tirosh, and M. Israeli, “Analysis of Short Beam Bending of Fiber Reinforced Composites”, p.206, Comp. Materials: Testing and Design ASTM STP 497, 1972.
- 5.
K. Hiroaki and N. Tohru, JSME Int. J., SeriesA: Mech. Mat Eng., 36, 73 (1993).
- 6.
Ü. Esendemir, M. R. Usal, and M. Usal, J. Reinf. Plast. Comp., 25, 835 (2006).
- 7.
M. R. Usal, M. Usal, and Ü. Esendemir, J. Reinf. Plast. Comp., 27, 263 (2008).
- 8.
K. A. Eckrote, C. J. Burstone, M. A. Freilich, G. E. Messer, and A. J. Goldberg, J. Dent. Res., 82, 262 (2003).
- 9.
R. F. Gibson, J. Sand. Str. Mat., 13, 579 (2011).
- 10.
E. E. Theotokoglou and E. Sideridis, J. Reinf. Plast. Comp., 30, 1125 (2011).
- 11.
S. L. Bai, V. Djafari, M. Andreanib, and D. François, Compos. Sci. Technol., 55, 343 (1995).
- 12.
C. Nightingale and R. J. Day, Compos. Part A: Appl. Sci. Manuf., 33, 1021 (2002).
- 13.
Z. Fan, M. H. Santare, and S. G. Advani, Compos. Part A: Appl. Sci. Manuf., 39, 540 (2008).
- 14.
V. Cesen and M. Sarikanat, J. Appl. Polym. Sci., 107, 1822 (2008).
- 15.
E. Sideridis and G. A. Papadopoulos, J. Appl. Polym. Sci., 93, 63 (2004).
- 16.
K. C. Shekar, B. A. Prasad, and N. E. Prasad, Procedia. Mat. Sci., 6, 1336 (2014).
- 17.
V. C. S. Chandrasekaran, S. G. Advani, and M. H. Santare, Carbon, 48, 3692 (2010).
- 18.
X. Wang, X. Zhao, Z. Wu, Z. Zhu, and Z. Wang, J. Comp. Mat., 50, 1073 (2016).
- 19.
Y. He and A. Makeev, Int. J. Solids Struct., 51, 1263 (2014).
- 20.
S. B. Singh, S. Vummadisetti, and H. Chawla, J. Struct. Eng., 46, 146 (2019).
- 21.
G. B. McKenna, Polymer-Plastics Technol. Eng., 5, 23 (1975).
- 22.
C. C. Chiao, R. L. Moore, and T. T. Chiao, Composites, 8, 161 (1977).
- 23.
D. F. Adams and D. E. Walrath, Exp. Mech., 27, 113 (1987).
- 24.
P. G. Ifju and D. Post, Exp. Techn., 15, 45 (1991).
- 25.
D. Post, F. Dai, Y. Guo, and P. Ifju, J. Comp. Mat., 23, 264 (1989).
- 26.
J. M. Whitney and C. E. Browning, Exp. Mech., 25, 294 (1985).
- 27.
D. F. Sims and J. C. Halpin, “Methods for Determining the Elastic and Viscoelastic Response of Composite Materials”, Composite Materials: Testing and Design [Third Conference], ASTM STP 546, American Society for Testing and Materials, 46 (1974).
- 28.
L. Gia-Ju, “Test Methods for In-plane Shear Modulus G12 and Transverse Shear Modulus G13 and G23”, Advances in Comp. Materials Proceedings of third Int. Conference on Comp. Mater., Paris, France, 1, 914 (1980).
- 29.
P. H. Petit, “A Simplified Method of Determining the In Plane Shear Stress — Strain Response of Unidirectional Composites”, ASTM STP 460, 83 (1969).
- 30.
B. W. Rosen, J. Comp. Mat., 6, 552 (1972).
- 31.
ASTM D2344/D2344M-16, ASTM International, West Conshohocken, PA, USA, 2016.
- 32.
NASTRAN Quick Reference Guide, MSC Software Corp., Newport Beach, CA, 2012.
- 33.
N. T. Kamar, M. M. Hossarn, A. Khomenko, M. Haq, L. T. Drzal, and A. Loss, Comp. Part A: Appl. Sci. Manuf., 70, 82 (2015).
Acknowledgements
Manufacturing and Testing of specimens were performed in collaboration with Hellenic Aerospace Industry S.A. and Composites Testing Laboratory, Ireland in the frame of a European Space Agency funded project (Space-RTM).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Strapatsakis, S., Theotokoglou, E.E. & Sideridis, E. Investigation of the In-Plane Shear and Interlaminar Shear in Woven Roving Composites. Fibers Polym 22, 264–275 (2021). https://doi.org/10.1007/s12221-021-9379-4
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- Woven roving composites
- Interlaminar shear
- Composite material
- Experimental study
- Finite element analysis