Evaluation of the Mechanical Properties of Polyether Sulfone-Toughened Epoxy Resin for Carbon Fiber Composites

Abstract

Polyether sulfone (PES), which is a thermoplastic polymer, was added as a toughening agent to a bisphenol-A type epoxy resin to form a matrix of carbon-fiber-reinforced composites (CFRPs). For benchmarking, carboxyl-terminated butadiene acrylonitrile (CTBN), which is a rubber-based toughening agent, was added to the epoxy resin. The mechanical and thermal properties of the PES- and CTBN-toughened epoxy resins were compared. Dicyandiamide (DICY) was used as the hardening agent, whereas 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) was used as the hardening accelerator. In addition, 4,4′-diamino diphenyl sulfone (DDS) was added to improve the dispersibility of PES in the epoxy resin. The CTBN-toughened epoxy resin exhibited improved impact strength and fracture toughness, but decreased tensile strength, tensile modulus, and glass transition temperature (Tg). The fracture toughness and Tg values of the PES-toughened epoxy resins increased with increasing amount of added PES. However, the tensile moduli and Tg values of the epoxy decreased upon addition of CTBN. The tensile and impact strengths of the specimen toughened with 10 phr PES increased by 14 % and 106 %, respectively, compared to those of the PES un-toughened epoxy resin. The ductility factor of the resin improved with increasing PES content. CTBN formed microvoids and CTBN particles within the epoxy matrix, which improved the fracture toughness of the resin, but deteriorated its tensile properties by stress concentration. In contrast, PES improved the properties of the epoxy resin. This was attributed to PES being well dispersed within the epoxy matrix, thereby absorbing the energy required for crack propagation. Hence, owing to their excellent mechanical properties, the PES-toughened epoxy resins were determined suitable for use as matrices for CFRPs.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    D. P. N. Vlasveld, H. E. N. Bersee, and S. J. Picken, Polymer, 46, 10269 (2005).

    CAS  Article  Google Scholar 

  2. 2.

    Y. L. Kim, J. Korean Ceram. Soc., 54, 66 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    K. M. Kim, Y. Hahn, S. M. Lee, K. Choi, and J. H. Lee, J. Korean Ceram. Soc., 55, 392 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    C. Lou, K. Xianzhi, W. Jianxin, and M. Liqun, J. Polym. Sci., 125, 578 (2012).

    CAS  Google Scholar 

  5. 5.

    Q. Feng, J. Yang, Y. Liu, H. Xiao, and S. Fu, J. Mater. Sci. Technol., 30, 90 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    J. Chen, X. Ren, C. Yi, S. Su, and X. Wang, React. Funct. Polym., 138, 29 (2019).

    Article  Google Scholar 

  7. 7.

    J. P. Yang, Z. K. Chen, G. Yang, S. Y. Fu, and L. Ye, Polymer, 49, 3168 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    H. Dou, B. Tian, Y. Huang, Y. Quan, Q. Chen, and G. Yin, J. Adhes. Sci. Technol., 30, 642 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    R. Akbari, M. H. Beheshty, and M. Shervin, Iranian Polym. J., 22, 313 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    D. Gunwant, P. L. Sah, and M. G. H. Zaidi, Mater. Today: Proc., 5, 24750 (2018).

    CAS  Google Scholar 

  11. 11.

    S. Grishchuk, L. Sorochynska, O. C. Vorster, and J. K. Kocis, J. Appl. Polym. Sci., 127, 5082 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    H. Jin, B. Yang, F. L. Jin, and S. J. Park, J. Ind. Eng. Chem., 25, 9 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    K. Mimura, H. Ito, and H. Fujioka, Polymer, 41, 4451 (2000).

    CAS  Article  Google Scholar 

  14. 14.

    M. Jiang, Y. Liu, C. Cheng, J. Zhou, B. Liu, M. Yu, and H. Zhang, Polym. Test., 69, 302 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    H. Shin, B. Kim, J. G. Han, M. Y. Lee, J. K. Park, and M. Cho, Compos. Sci. Technol., 145, 173 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    R. A. Korokhin, V. I. Solodilov, Y. A. Gorbatkina, and A. V. Shapagin, Mech. Compos. Mater., 51, 313 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    P. Katti, K. V. Kundan, S. Kumar, and S. Bose, Polymer, 122, 184 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    ASTM D7028-07, Standard Test Methods for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA), 2015.

  19. 19.

    ASTM D638-14, Standard Test Methods for Tensile Properties of Plastics, 2014.

  20. 20.

    ASTM D256-10, Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics, 2010.

  21. 21.

    ASTM D5045-14, Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials, 2014.

  22. 22.

    K.-Y. Kim and L. Ye, J. Mater. Sci., 39, 1267 (2004).

    CAS  Article  Google Scholar 

  23. 23.

    S. E. Lee, E. Jeong, M. Y. Lee, M. K. Lee, and Y. S. Lee, J. Ind. Eng. Chem., 33, 73 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    G. Yang, B. Zheng, J. P. Yang, G. S. Xu, and S. Y. Fu, J. Polym. Sci. Part A: Polym. Chem., 46, 612 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    R. Thomas, D. Yumei, H. Yuelong, Y. Le, P. Moldenaers, Y. Weimin, T. Czigany, and S. Thomas, Polymer, 49, 278 (2008).

    Article  Google Scholar 

  26. 26.

    A. Inamdar, J. Cherukattu, A. Anand, and B. Kandasubramanian, Ind. Eng. Chem. Res., 57, 4479 (2018).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Civil-Military Technology Cooperation Program (Project number 17-CM-MA-24).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ki-Young Kim or Caroline Sunyong Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jung, HS., Park, Y., Nah, CW. et al. Evaluation of the Mechanical Properties of Polyether Sulfone-Toughened Epoxy Resin for Carbon Fiber Composites. Fibers Polym 22, 184–195 (2021). https://doi.org/10.1007/s12221-021-9261-4

Download citation

Keywords

  • Epoxy
  • Fracture toughness
  • Polyether sulfone
  • Compact tension
  • Single edge notched bending