Selection and Optimization of Silane Coupling Agents to Develop Durable Functional Cotton Fabrics Using TiO2 Nanoparticles

Abstract

In recent years there is progressive research conducted on modification of textile and nanoparticles for long-lasting performances without compromising the sensorial and non-sensorial comfort. The appropriate finishing treatment of textile is of great concern to impart comfort along with durable multifunctional characters. The main objective of this study was to achieve the durable functionality without compromising the comfort and physical properties of cotton fabric. TiO2 nanoparticles have been modified with two different silane coupling agents such as (3-Glycidoxypropyl)trimethoxysilane (GPTS) and 1,2-Bis(triethoxysilyl)ethane (BTSE) using different concentrations. The modified nanoparticles were characterized using Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) to confirm the modification and fixing of chemicals at the surface. Modified nanoparticles were applied on textile by pad-dry-cure method. The treated cotton fabrics were washed to confirm the adhesion of nanoparticles after several washing cycles. The durable ultraviolet (UV) blocking capabilities were analyzed before and after washing. Then, comfort properties were evaluated and compared to made selection of best silane coupling agent having minimum effect on inherent properties of cotton textiles.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. Radetić, J. Mater. Sci., 48, 95 (2013).

    Article  Google Scholar 

  2. 2.

    A. G. Gonçalves, B. Jarrais, C. Pereira, J. Morgado, C. Freire, and M. F. R. Pereira, J. Mater. Sci., 47, 5263 (2012).

    Article  Google Scholar 

  3. 3.

    M. Yu, C. Gu, W.-D. Meng, and F.-L. Qing, Appl. Surf. Sci., 253, 3669 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    C.-H. Xue, S.-T. Jia, H.-Z. Chen, and M. Wang, Sci. Technol. Adv. Mater., 9, 035001 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    S. Riaz, M. Ashraf, T. Hussain, and M. T. Hussain, Cellulose, 26, 5159 (2019).

    CAS  Article  Google Scholar 

  6. 6.

    S. Riaz, M. Ashraf, T. Hussain, M. T. Hussain, and A. Younus, Colloids Surfaces A Physicochem. Eng. Asp., 581, 123799 (2019).

    CAS  Article  Google Scholar 

  7. 7.

    K. Qi, J. H. Xin, W. A. Daoud, and C. L. Mak, Int. J. Appl. Ceram. Technol., 4, 554 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    A. Mickevičiene, D. Mikučioniene, and L. Rageliene, Fibres Text. East. Eur., 5, 59 (2014).

    Google Scholar 

  9. 9.

    E. Navarro, A. Baun, R. Behra, N. B. Hartmann, J. Filser, A. J. Miao, A. Quigg, P. H. Santschi, and L. Sigg, Ecotoxicology, 17, 372 (2008).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    E. S. Bernhardt, B. P. Colman, M. F. Hochella, B. J. Cardinale, R. M. Nisbet, C. J. Richardson, and L. Yin, J. Environ. Qual., 39, 1954 (2010).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    P. Limpiteeprakan, S. Babel, J. Lohwacharin, and S. Takizawa, Environ. Sci. Pollut. Res., 23, 22810 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    L. Windler, C. Lorenz, N. von Goetz, K. Hungerbühler, M. Amberg, M. Heuberger, and B. Nowack, Environ. Sci. Technol., 46, 8181 (2012).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    R. Dastjerdi, M. Montazer, and S. Shahsavan, Colloids Surf A Physicochem Eng Asp., 345, 202 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    J. Sójka-Ledakowicz and M. H. Kudzin, Fibres Text East Eur., 22, 118 (2014).

    Google Scholar 

  15. 15.

    A. Yadav, V. Prasad, A. A. Kathe, S. Raj, D. Yadav, C. Sundaramoorthy, and N. Vigneshwaran, Bull. Mater. Sci., 29, 641 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    L. W. McKeen, “Fluorinated Coatings Finish”, 2nd Ed., William Andrew Publishing, New York, 2006.

    Google Scholar 

  17. 17.

    I. Khan, K. Saeed, and I. Khan, Arab. J. Chem., 12, 908 (2019).

    CAS  Article  Google Scholar 

  18. 18.

    D. R. Baer, M. H. Engelhard, G. E. Johnson, J. Laskin, J. Lai, K. Mueller, P. Munusamy, S. Thevuthasan, H. Wang, N. Washton, A. Elder, B. L. Baisch, A. Karakotti, S. V. N. T. Kuchibhatla, and D. Moon, J. Vac. Sci. Technol. A, 31, 050820 (2013).

    PubMed Central  Article  Google Scholar 

  19. 19.

    A. Amaria, N. Nuryono, and S. Suyanta, Orient. J. Chem., 33, 384 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    J. Zhao, M. Milanova, M. M. C. G. Warmoeskerken, and V. Dutschk, Colloids Surfaces A Physicochem. Eng. Asp., 413, 273 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Y. Yin, R. Huang, Y. Xu, and C. Wang, J. Text. Inst., 108, 1662 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    M. P. Fuller and P. R. Griffiths, Anal. Chem., 50, 1906 (1978).

    CAS  Article  Google Scholar 

  23. 23.

    E. Ukaji, T. Furusawa, M. Sato, and N. Suzuki, Appl. Surf. Sci., 254, 563 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    J. Coates in “Encyclopedia of Analytical Chemistry” (R. A. Meyers Ed.), Vol. 6, pp.10815–10837, John Wiley & Sons, New York, 2000.

  25. 25.

    Y. Buyukmurat and S. Akyuz, J. Mol. Struct., 744–747, 921 (2005).

    Article  Google Scholar 

  26. 26.

    S. B. Stankovic, D. Popovic, G. B. Poparic, and M. Bizjak, Text. Res. J., 79, 1034 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    H. Yang, S. Zhu, and N. Pan, J. Appl. Polym. Sci., 92, 3201 (2004).

    CAS  Article  Google Scholar 

  28. 28.

    N. Abidi, L. Cabrales, and E. Hequet, ACS Appl. Mater. Interfaces, 1, 2141 (2009).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    M. Yang, W. Liu, C. Jiang, C. Liu, S. He, Y. Xie, and Z. Wang, J. Mater. Sci., 54, 2079 (2019).

    CAS  Article  Google Scholar 

  30. 30.

    N. A. Ibrahim, B. M. Eid, E. A. El-Aziz, T. M. Abou Elmaaty, and S. M. Ramadan, RSC Adv., 7, 33219 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    K. Hoffmann, J. Laperre, A. Avermaete, P. Altmeyer, and T. Gambichler, Arch. Dermato., 137, 1089 (2001).

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Higher Education Commission of Pakistan [NRPU Grant No. 6074].

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Ashraf.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Riaz, S., Ashraf, M., Hussain, T. et al. Selection and Optimization of Silane Coupling Agents to Develop Durable Functional Cotton Fabrics Using TiO2 Nanoparticles. Fibers Polym 22, 109–122 (2021). https://doi.org/10.1007/s12221-021-9245-4

Download citation

Keywords

  • Cotton
  • Silane coupling agents
  • Durability
  • Metal oxide nanoparticles
  • UPF