Lignin Based Flexible Electromagnetic Shielding PU Synergized with Graphite

Abstract

In this paper, lignin (L)-based polyurethane (FeGLPU) with excellent electromagnetic shielding properties was prepared and studied. The modified reduced iron powder was modified with KH550, and then the obtained modified reduced iron powder (Fe) was mixed with lignin, polyethylene glycol 200 (PEG200), hexamethylene diisocyanate (HDI) and graphite (G) to in-situ synthesize the FeGLPU. The thermal stability, mechanical properties, electronic conductivity, and morphology of the composite FeGLPU were characterized in detail. The electromagnetic interference shielding effectiveness (EMI SE) of FeGLPU was tested in the frequency range of 8.2–26.5 GHz. When the content of Fe and G was fixed at 10% and the lignin content was 5%, the maximum EMI SE was 21.6 dB, and the frequency width of EMI SE greater than 10 dB was 18.3 GHz. The conductivity was 4.27×10−4 S/m, and the tensile strength of Fe10G10L5PU reached 11.7 MPa. When the lignin content increased to be 20%, the maximum EMI SE was 22.5 dB, and the frequency width of EMI SE greater than 10 dB was 18.3 GHz. The conductivity was 1.06×10−2 S/m, and the thermal decomposition temperature T5 (5% weight loss) reached 234 °C. The obtained excellent EMI SE should be due to the synergistic effect of Fe, G and lignin. It can be observed from the SEM observation that the G and Fe are uniformly dispersed in PU matrix with strong interfacial interaction. It was illustrated that the prepared FeGLPU was with efficient electromagnetic shielding properties, good mechanical properties, and high thermal stability. This lignin based electromagnetic shielding PU was proposed to have broad application prospects due to its low expenses and ecology friendliness.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. Li, W. Li, J. Nie, D. Liu, and G. Sui, Carbon, 143, 154 (2019).

    CAS  Article  Google Scholar 

  2. 2.

    J. H. Battocletti, Routledg, 2019.

  3. 3.

    E. Zhou, J. Xi, Y. Guo, Y. Liu, Z. Xu, L. Peng, W. Gao, J. Ying, Z. Chen, and C. Gao, Carbon, 133, 316 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    Y. J. Lu, M. Yan, and Y. Gao, Value Engineering, 1, 51 (2019).

    Google Scholar 

  5. 5.

    X. Ji, D. Chen, Q. Wang, J. Shen, and S. Guo, Compos. Sci. Technol., 163, 49 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    P. Saini and V. Choudhary, J. Nanopart. Res., 15, 1415 (2013).

    Article  CAS  Google Scholar 

  7. 7.

    D. Lu, Z. Mo, B. Liang, L. Yang, Z. He, H. Zhu, Z. Tang, and X. Gui, Carbon, 133, 457 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    T. E. Norgate, S. Jahanshahi, and W. J. Rankin, J. Cleaner Prod., 15, 838 (2007).

    Article  Google Scholar 

  9. 9.

    W. Xu, G. S. Wang, and P. G. Yin, Carbon, 139, 759 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    Y. N. Shi, X. H. Gao, and J. Qiu, Ceram. Int., 45, 3126 (2019).

    CAS  Article  Google Scholar 

  11. 11.

    Y. Li, B. Shen, D. Yi, L. Zhang, W. Zhai, X. Wei, and W. Zheng, Compos. Sci. Technol., 138, 209 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    A. Fletcher, M. C. Gupta, K. L. Dudley, and E. Vedeler, Compos. Sci. Technol., 70, 953 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    F. Yu, H. Deng, Q. Zhang, K. Wang, C. Zhang, F. Chen, and Q. Fu, Polymer, 54, 6425 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    M. Y. Li, S. Gupta, C. Chang, and N. H. Tai, Compos. Part B-Eng., 161, 617 (2019).

    CAS  Article  Google Scholar 

  15. 15.

    F. Ren, Z. Li, L. Xu, Z. Sun, P. Ren, D. Yan, and Z. Li, Compos. Part B-Eng., 155, 405 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    G. Sang, J. Dong, X. He, J. Jiang, J. Li, P. Xu, and Y. Ding, Compos. Part B-Eng., 164, 467 (2019).

    CAS  Article  Google Scholar 

  17. 17.

    T. K. Gupta, B. P. Singh, V. N. Singh, S. Teotia, A. P. Singh, I. Elizabeth, S. R. Dhakate, S. K. Dhawan, and R. B. Mathur, J. Mater. Chem. A., 2, 4256 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    S. Biswas, G. P. Kar, and S. Bose, J. Mater. Chem. A., 3, 12413 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    J. M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen, and C. Detrembleur, Mater. Sci. Eng.: R Rep., 74, 211 (2013).

    Article  Google Scholar 

  20. 20.

    Y. Yang, M. C. Gupta, K. L. Dudley, and R. W. Lawrence, Adv. Mater., 17, 1999 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    Q. Song, F. Ye, X. Yin, W. Li, H. Li, Y. Liu, and L. Cheng, Adv. Mater., 29, 1701583 (2017).

    Article  CAS  Google Scholar 

  22. 22.

    Y. Wen, J. Song, J. Chen, Y. Sun, and W. Yang, BioResources, 12, 1288 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    V. Panwar, J. O. Park, S. H. Park, S. Kumar, and R. M. Mehra, J. Appl. Polym. Sci., 115, 1306 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    Y. Xu, Y. Yang, D. X. Yan, H. Duan, G. Zhao, and Y. Liu, Chem. Eng. J., 360, 1427 (2019).

    CAS  Article  Google Scholar 

  25. 25.

    I. Y. Jeon and J. B. Baek, Materials, 3, 3654 (2010).

    CAS  PubMed Central  Article  Google Scholar 

  26. 26.

    V. K. Ponnusamy, D. D. Nguyen, J. Dharmaraja, S. Shobana, J. R. Banu, R. G. Saratale, S. W. Chang, and G. Kumar, Bioresource Technol., 271, 462 (2019).

    CAS  Article  Google Scholar 

  27. 27.

    Y. M. Zhang, Q. Zhao, L. Li, R. Yan, J. Zhang, J. C. Duan, B. J. Liu, Z. Y. Sun, M. Y. Zhang, W. Hu, and N. N. Zhang, RSC Adv., 8, 32252 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    M. Zimniewska, R. Kozlowski, and J. Batog, Mol. Cryst. Liq. Cryst., 484, 43 (2008).

    CAS  Article  Google Scholar 

  29. 29.

    F. A. Faria, D. V. Evtuguin, A. Rudnitskaya, M. T. Gomes, J. A. Oliveira, M. P. F. Graça, and L. C. Costa, Polym. Int., 61, 788 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    R. Ruggiero, A. E. H. Machado, C. Gardrat, W. Hoareau, S. Grelier, B. Siegmund, and A. Castellan, J. Photochem. Photobiol.: A, 173, 150 (2005).

    CAS  Article  Google Scholar 

  31. 31.

    Y. Ma, J. Dai, L. Wu, G. Fang, and Z. Guo, Polymer, 114, 113 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    J. H. Du, C. Sun, S. Bai, G. Su, Z. Ying, and H. M. Cheng, J. Mater. Res., 17, 1232 (2002).

    CAS  Article  Google Scholar 

  33. 33.

    H. Gargama, A. K. Thakur, and S. K. Chaturvedi, J. Alloys Compd., 654, 209 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    C. L. Huang, Y. J. Wang, Y. C. Fan, C. L. Hung, and Y. C. Liu, J. Mater Sci., 52, 2560 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    A. Kolanowska, D. Janas, A. P. Herman, R. G. Jędrysiak, T. Gizewski, and S. Boncel, Carbon, 126, 31 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    G. Milczarek, J. Electroanal. Chem., 638, 178 (2010).

    CAS  Article  Google Scholar 

  37. 37.

    C. Morari, I. Balan, J. Pintea, E. Chitanu, and I. Iordache, Prog. Electromag. Res., 21, 93 (2011).

    Article  Google Scholar 

  38. 38.

    N. Sykam and G. M. Rao, Mater. Lett., 233, 59 (2018).

    CAS  Article  Google Scholar 

  39. 39.

    I. Marhooni, J. Int. J. Sci. Technol. Res., 6, 225 (2017).

    Google Scholar 

  40. 40.

    L. C. Jia, L. Xu, F. Ren, P. G. Ren, D. X. Yan, and Z. M. Li, Carbon, 144, 101 (2019).

    CAS  Article  Google Scholar 

  41. 41.

    L. C. Jia, L. Xu, F. Ren, P. G. Ren, D. X. Yan, and Z. M. Li, Carbon, 144, 101 (2019).

    CAS  Article  Google Scholar 

  42. 42.

    Y. M. Zhang, R. Yan, T. D. Ngo, Q. Zhao, J. Duan, X. Du, Y. Wang, B. Liu, Z. Sun, W. Hu, and H. Xie, Eur. Polym. J., 117, 114 (2019).

    CAS  Article  Google Scholar 

  43. 43.

    E. B. da Silva, M. Zabkova, J. D. Araújo, C. A. Cateto, M. F. Barreiro, M. N. Belgacem, and A. E. Rodrigues, Chem. Eng. Res. Des., 87, 1276 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China [No. 21404013], the Science and Technology Development Plan of Jilin Province, China [Nos. 20160101323JC, 20170101110JC, 20180201075GX, 20180201076GX, 20180519014JH, 20200401036GX], the Jilin Provincial Development and Reform Commission, China [JJKH20191297KJ, 2018C041-1], the Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, the Open Project of National & Local United Engineering Lab for Power Battery, Northeast Normal University, China [No. 130028822].

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Wei Hu or Niaona Zhang.

Supporting Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Qi, Y., Zhang, Y. et al. Lignin Based Flexible Electromagnetic Shielding PU Synergized with Graphite. Fibers Polym 22, 1–8 (2021). https://doi.org/10.1007/s12221-021-9227-6

Download citation

Keywords

  • Lignin
  • Flexible
  • Electromagnetic shielding
  • PU
  • Biocomposite