Effect of Process Parameters on Fiber Diameter and Fiber Distribution of Melt-Blown Polypropylene Microfibers Produced by Biax Line


Meltblown nonwovens market has been continuing to grow because of the unique characteristics of allowing the production of microfiber webs directly from a thermoplastic polymer in a single step. Whereas a vast majority of meltblown processes have utilized the traditional Exxon die, the Biax-die has also been used in some processes. The aim of this study was to understand the effect of critical process conditions of the Biax process, which has the advantage of lower high pressure hot air consumption compared to the traditional process, on the structure of meltblown webs. As the performance properties of meltblown nonwovens are mainly determined by the fiber diameter and diameter distribution, this study focused on these two characteristics considering various process conditions such as melt temperature, melt throughput, air temperature and air pressure. In conclusion, it was observed that there were three distribution types, the normal distribution, log-normal distribution, and skewed log-normal distribution, for meltblown webs produced by the Biax process. Air pressure and melt throughput were the most effective process conditions on the fiber diameter of meltblown polypropylene webs. It was also observed that fine fiber webs close to one-micron average fiber diameter and relatively narrower fiber diameter distribution can be produced under appropriate processing conditions using the Biax process.

This is a preview of subscription content, access via your institution.


  1. 1.

    M. Wehmann and W. J. G. McCulloch in “Polypropylene”, 1st ed. (J. Karger-Kocsis Ed.), Vol. 2, pp.415–420, Springer Science+Business Media, Dordrecht, 1999.

  2. 2.

    R. Uppal, G. Bhat, C. Eash, and K. Akato, Fiber. Polym., 14, 660 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    M. A. Hassan, B. Y. Yeom, A. Wilkie, B. Pourdeyhimi, and S. A. Khan, J. Membr. Sci., 427, 336 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    D. Zhang, C. Sun, and H. Song, J. Appl. Polym. Sci., 94, 1218 (2004).

    CAS  Article  Google Scholar 

  5. 5.

    R. R. Hegde and G. S. Bhat, J. Appl. Polym. Sci., 115, 1062 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    E. C. A. Schwarz, U. S. Patent, 5476616 (1995).

  7. 7.

    R. Zhao, A Paper for Insight, Austin, Texas, Oct 10–14, 2004.

  8. 8.

    M. A. Hassan, S. A. Khan, and B. Pourdeyhimi, J. Appl. Polym. Sci., 133, 42998 (2016).

    Article  Google Scholar 

  9. 9.

    M. Jafari, Ph. D. Dissertation, NCSU, Raleigh, North Carolina, 2017.

  10. 10.

    H. M. Krutka, R. L. Shambaugh, and D. V. Papavassiliou, Ind. Eng. Chem. Res., 44, 8922 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    Kasen Nozzle, “Meltblown”, Available at https://www.kasen.co.jp/english/product/nonwoven-production-part/meltblown-nozzle.php (Accessed February 3, 2020).

  12. 12.

    Biax-Fiberfilm Corporation, “Meltblown Systems”, Available at https://www.biax-fiberfilm.com/meltblown-systems (Accessed April 3, 2020).

  13. 13.

    H. Yin, Z. Yan, and R. R. Bresee, Int. Nonwovens J., 8, 60 (1999).

    Google Scholar 

  14. 14.

    T. Chen, X. Wang, and X. Huang, Text. Res. J., 75, 76 (2005).

    CAS  Article  Google Scholar 

  15. 15.

    C. J. Ellison, A. Phatak, D. W. Giles, C. W. Macosko, and F. S. Bates, Polymer, 48, 3306 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    K. C. Dutton, J. Text. Appar. Technol. Manag., 6, 1 (2008).

    Google Scholar 

  17. 17.

    K. Duran, D. Duran, G. Oymak, K. Kiliç, E. Öncü, and M. Kara, Tekst. Konfeksiyon, 23, 136 (2013).

    Google Scholar 

  18. 18.

    Y. Yesil and G. S. Bhat, Int. J. Cloth. Sci. Tech., 28, 780 (2016).

    Article  Google Scholar 

  19. 19.

    S. Fakhimi, Ph. D. Dissertation, NCSU, Raleigh, North Carolina, 2017.

  20. 20.

    Y. Lee and L. C. Wadsworth, Polymer, 33, 1200 (1992).

    CAS  Article  Google Scholar 

  21. 21.

    R. R. Bresee and U. A. Qureshi, J. Eng. Fibers Fabr., 1, 32 (2006).

    Google Scholar 

  22. 22.

    Y. Yesil and G. S. Bhat, J. Text. Inst., 108, 1035 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    E. M. Moore, D. V. Papavassiliou, and R. L. Shambaugh, Int. Nonwovens J., 13, 43 (2004).

    Google Scholar 

  24. 24.

    W. Han, X. Wang, and G. S. Bhat, J. Nanomater. Mol. Nanotechnol., 2, 1 (2013).

    Google Scholar 

  25. 25.

    R. R. Bresee and W. C. Ko, Int. Nonwovens J., 12, 21 (2003).

    CAS  Google Scholar 

  26. 26.

    R. Nayak, I. L. Kyratzis, Y. B. Truong, R. Padhye, and L. Arnold, J. Text. Inst., 106, 629 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    M. Guo, H. Liang, Z. Luo, Q. Chen, and W. Wei, Fiber. Polym., 17, 257 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    T. Ishikawa, Y. Ishii, Y. Ohkoshi, and K. H. Kim, Text. Res. J., 89, 1734 (2019).

    CAS  Article  Google Scholar 

  29. 29.

    T. Chen and X. Huang, Text. Res. J., 73, 651 (2003).

    CAS  Article  Google Scholar 

  30. 30.

    T. Chen, X. Wang, and X. Huang, Text. Res. J., 74, 1018 (2004).

    CAS  Article  Google Scholar 

  31. 31.

    Y. Pu, J. Zheng, F. Chen, Y. Long, H. Wu, Q. Li, S. Yu, X. Wang, and X. Ning, Polymers, 10, 959 (2018).

    Article  Google Scholar 

  32. 32.

    R. Zhao, Int. Nonwovens J., 14, 19 (2005).

    CAS  Google Scholar 

  33. 33.

    H. M. Krutka, R. L. Shambaugh, and D. V. Papavassiliou, Ind. Eng. Chem. Res., 45, 5098 (2006).

    CAS  Article  Google Scholar 

  34. 34.

    S. Barilovits, Ph. D. Dissertation, NCSU, Raleigh, North Carolina, 2018.

  35. 35.

    B. Dodson, P. C. Hammett, and R. Klerx, “Probabilistic Design for Optimization and Robustness for Engineers”, 1st ed., John Wiley & Sons, West Sussex, 2014.

    Google Scholar 

  36. 36.

    K. Krishnamoorthy, “Handbook of Statistical Distributions with Applications”, 2nd ed., CRC Press, Boca Raton, Florida, 2016.

    Google Scholar 

  37. 37.

    E. L. Crow and K. Shimizu, “Lognormal Distributions: Theory and Applications”, Vol. 88, Marcel Dekker, New York, 1987.

    Google Scholar 

  38. 38.

    Q. Y. Xu and Y. M. Wang, Adv. Mater. Res., 650, 78 (2013).

    Article  Google Scholar 

  39. 39.

    X. Wang and Q. Ke, Polym. Eng. Sci., 46, 1 (2006).

    Article  Google Scholar 

  40. 40.

    D. H. Tan, C. Zhou, C. J. Ellison, S. Kumar, C. W. Macosko, and F. S. Bates, J. Non-Newtonian Fluid Mech., 165, 892 (2010).

    CAS  Article  Google Scholar 

  41. 41.

    R. L. Shambaugh, Ind. Eng. Chem. Res., 27, 2363 (1988).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Numan Hoda.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hoda, N., Mert, F., Kara, F. et al. Effect of Process Parameters on Fiber Diameter and Fiber Distribution of Melt-Blown Polypropylene Microfibers Produced by Biax Line. Fibers Polym 22, 285–293 (2021). https://doi.org/10.1007/s12221-021-9155-5

Download citation


  • Biax die
  • Melt blowing
  • Polypropylene
  • Nonwovens
  • Fiber diameter