The Effect of Silver Concentration on Ag-TiO2 Nanoparticles Coated Polyester/Cellulose Fabric by In situ and Ex situ Photo-reduction Method — A Comparative Study

Abstract

In situ synthesis coating method of textile fabric is an efficient strategy to reduce the time and energies in comparison with ex situ synthesis methods. A facile in situ synthesis method was used to make TiO2-Ag nanoparticles (NPs) coated fabric and compared with a traditional ex situ synthesis method by a photo-reduction approach. The effect of silver concentration was assessed for both methods. The corona discharge treatment was used to increase the adhesion of the coating to the surface of the fabric. The FESEM and map showed more even distribution of the TiO2-Ag NPs coated fabric for in situ method in comparison with ex situ. DLS analysis was employed for determining the average particle size of the NPs colloids and show the fewer colloids average size of the in situ method than ex situ. The elemental analysis of the EDS and ICP showed a significant efficiency of the in situ synthesis method for silver nitrate reduction that leads to an increase in the nanoparticles concentration on the surface. Self-cleaning and antibacterial activity have been increased by in situ synthesis coating method in comparison with ex situ method. The enhancement of silver nitrate concentration led to a considerable increase in silver content for in situ method in comparison with ex situ method. However, the self-cleaning improvement showed a critical concentration at silver nitrate of 0.005 w/v%. The wash durability of the coated fabrics showed a significant increase in durability for in situ synthesis. The measurement of the mechanical strength of the fabrics showed no significant change with both methods of coating.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Y. Huang, S. S. H. Ho, Y. Lu, R. Niu, L. Xu, J. Cao, and S. Lee, Molecules, 21, 56 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. 2.

    M. E. El-Naggar, T. I. Shaheen, S. Zaghloul, M. H. El-Rafie, and A. Hebeish, Ind. Eng. Chem. Res., 55, 2661 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann, Chem. Rev., 114, 9919 (2014).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei, and H. Tang, Carbon, 49, 2693 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    H. Li, G. Zhao, Z. Chen, B. Song, and G. Han, J. Am. Ceram. Soc., 93, 445 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    R. Daghrir, P. Drogui, and D. Robert, Ind. Eng. Chem. Res., 52, 3581 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    S. G. Kumar and L. G. Devi, J. Phys. Chem. A, 115, 13211 (2011).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    S. F. Chen, J. P. Li, K. Qian, W. P. Xu, Y. Lu, W. X. Huang, and S. H. Yu, Nano Res., 3, 244 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    J. He, I. Ichinose, T. Kunitake, and A. Nakao, Langmuir, 18, 10005 (2002).

    CAS  Article  Google Scholar 

  10. 10.

    A. G. Hassabo, M. E. El-Naggar, A. L. Mohamed, and A. A. Hebeish, Carbohyd. Polym., 210, 144 (2019).

    CAS  Article  Google Scholar 

  11. 11.

    G. Cacciato, M. Bayle, A. Pugliara, C. Bonafos, M. Zimbone, V. Privitera, M. G. Grimaldi, and R. Carles, Nanoscale, 7, 13468 (2015).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    V. Rodríguez-González, S. O. Alfaro, L. Torres-Martínez, S.-H. Cho, and S.-W. Lee, Appl. Catal. B., 98, 229 (2010).

    Article  CAS  Google Scholar 

  13. 13.

    P. D. Cozzoli, R. Comparelli, E. Fanizza, M. L. Curri, A. Agostiano, and D. Laub, J. Am. Chem. Soc., 126, 3868 (2004).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    M. Banach, L. Tymczyna, A. Chmielowiec-Korzeniowska, and J. Pulit-Prociak, Bioinorg. Chem. Appl., 2016, 1 (2016).

    Article  CAS  Google Scholar 

  15. 15.

    M. E. El-Naggar, S. Shaarawy, and A. A. Hebeish, Int. J. Biol. Macromol., 106, 1192 (2018).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    J. Yan, A. M. Abdelgawad, M. E. El-Naggar, and O. J. Rojas, Carbohyd. Polym., 147, 500 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Y. Cao, H. Tan, T. Shi, T. Tang, and J. Li, J. Chem. Technol. Biot, 83, 546 (2008).

    CAS  Article  Google Scholar 

  18. 18.

    M. Rehan, M. E. El-Naggar, H. M. Mashaly, and R. Wilken, Carbohyd. Polym., 182, 29 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    A. L. Mohamed, M. E. El-Naggar, T. I. Shaheen, and A. G. Hassabo, Microsyst. Technol., 22, 979 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Z. Chen, K. Zhou, X. Lu, and Y. C. Lam, Acta Mech., 225, 431 (2014).

    Article  Google Scholar 

  21. 21.

    T. Govindarajan and R. Shandas, Polymers, 6, 2309 (2014).

    Article  CAS  Google Scholar 

  22. 22.

    E. Liston, L. Martinu, and M. Wertheimer, J. Adhes. Sci. Technol., 7, 1091 (1993).

    CAS  Article  Google Scholar 

  23. 23.

    C. Wang, Y. Liu, H. Xu, Y. Ren, and Y. Qiu, Appl. Surf. Sci., 254, 2499

  24. 24.

    K. Gotoh and S. Yoshitaka, Text. Res. J., 83, 1606 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    C. Zhang, M. Zhao, L. Wang, L. Qu, and Y. Men, Appl. Surf. Sci., 400, 304 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    K. Fang and C. Zhang, Appl. Surf. Sci., 255, 7561 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    G. Wade and W. Cantwell, J. Mater. Sci. Lett., 19, 1829 (2000).

    CAS  Article  Google Scholar 

  28. 28.

    F. Emami, S. Shekarriz, Z. Shariatinia, and Z. M. Mahdieh, Fiber. Polym., 19, 1014 (2018).

    CAS  Article  Google Scholar 

  29. 29.

    S. Shahidi and M. Ghoranneviss, Fiber. Polym., 13, 971 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    Z. M. Mahdieh, S. Shekarriz, F. A. Taromi, and M. Montazer, Carbohyd. Polym., 198, 17 (2018).

    Article  CAS  Google Scholar 

  31. 31.

    K. Singha, Am. J. Polym. Sci., 2, 39 (2012).

    Article  Google Scholar 

  32. 32.

    A. Hasanbeigi and L. Price, Renew. Sust. Energ. Rev., 16, 3648 (2012).

    Article  Google Scholar 

  33. 33.

    S. Mowafi, M. Rehan, H. M. Mashaly, A. A. El-Kheir, and H. E. Emam, J. Text. I., 108, 1828 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    M. Montazer and M. M. Amiri, J. Phys. Chem. B., 118, 1453 (2014).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    V. Allahyarzadeh, M. Montazer, N. H. Nejad, and N. Samadi, J Appl. Polym. Sci., 129, 892 (2013).

    CAS  Article  Google Scholar 

  36. 36.

    M. Abid, S. Bouattour, A. M. Ferraría, D. S. Conceição, A. P. Carapeto, L. F. V. Ferreira, A. M. B. do Rego, M. M. Chehimi, M. R. Vilar, and S. Boufi, J. Colloid Interface Sci., 507, 83 (2017).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    S. Li, T. Zhu, J. Huang, Q. Guo, G. Chen, and Y. Lai, Int. J. Nanomedicine, 12, 2593 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    M. Milošević, M. Radoičić, Z. Šaponjić, T. Nunney, D. Marković, J. Nedeljković, and M. Radetić, J. Mater. Sci., 48, 5447 (2013).

    Article  CAS  Google Scholar 

  39. 39.

    M. Milošević, M. Radoičić, Z. Šaponjić, T. Nunney, C. Deeks, V. Lazić, M. Mitrić, T. Radetić, and M. Radetić, Cellulose, 21, 3781 (2014).

    Article  CAS  Google Scholar 

  40. 40.

    Z. M. Mahdieh, S. Shekarriz, F. A. Taromi, and M. Montazer, Cellulose, 25, 2355 (2018).

    Article  CAS  Google Scholar 

  41. 41.

    J. P. Fernández-Blázquez, D. Fell, E. Bonaccurso, and A. Del Campo, J. Colloid Interface Sci., 357, 234 (2011).

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    S. Inbakumar, R. Morent, N. De Geyter, T. Desmet, A. Anukaliani, P. Dubruel, and C. Leys, Cellulose, 17, 417 (2010).

    CAS  Article  Google Scholar 

  43. 43.

    H. Dave, L. Ledwani, N. Chandwani, N. Chauhan, and S. Nema, J. Text. I., 105, 586 (2014).

    CAS  Article  Google Scholar 

  44. 44.

    C. E. Duru, I. A. Duru, F. C. Ibe, I. O. Achinihu, and L. Ukiwe, IOSR-JAC, 8, 35 (2015).

    Google Scholar 

  45. 45.

    M. Moovendhan, P. Seedevi, A. Shanmugam, and V. Shanmugam, J. Biol. Act. Prod. Nat., 5, 52 (2015).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shahla Shekarriz.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahdieh, Z.M., Shekarriz, S. & Taromi, F.A. The Effect of Silver Concentration on Ag-TiO2 Nanoparticles Coated Polyester/Cellulose Fabric by In situ and Ex situ Photo-reduction Method — A Comparative Study. Fibers Polym 22, 87–96 (2021). https://doi.org/10.1007/s12221-021-9049-6

Download citation

Keywords

  • In situ
  • Ex situ
  • Photoreduction
  • Ag-TiO2 nanocomposite particles
  • Self-cleaning