Skip to main content
Log in

Optimization of Tartrazine Adsorption onto Polypyrrole/SrFe12O19/Graphene Oxide Nanocomposite Using Central Composite Design and Bat Inspired Algorithm with the Aid of Artificial Neural Networks

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This project was aimed to focus on the application of bat inspired algorithm with the aid of artificial neural networks (ANN-BA) as a novel metaheuristic algorithm in chemistry and environmental sciences for optimization of tartrazine dye adsorption onto the polypyrrole/SrFe12O19/graphene oxide (PPy/SrM/GO) nanocomposite from aqueous solutions. The PPy/SrM/GO nanocomposite was fabricated by an in situ polymerization process and its structural and magnetic properties were studied by means of several instrumental techniques. Four factors affecting adsorption process were optimized in a batch system by ANN-BA and central composite design (CCD). In comparison to the CCD, the ANN- BA model obtained through levenberg marquardt back propagation methodology, gave higher percentage removal (94 %) about 6 %. Under optimal conditions obtained by ANN-BA, the values of four factors including initial concentration, adsorbent dosage, pH, and shaking rate were 15 mg/l, 0.02 g, 6.5, and 297 rpm, respectively. In the above conditions, the experimental results were fitted well to the pseudo-second-order kinetic model with the rate constant (k2) of 0.038 g/mg/min and the Langmuir adsorption isotherm with monolayer maximum capacity (qm) of 123.5 mg/g with determination coefficients (R2) of 0.9986 and 0.9989, respectively. Thermodynamic studies revealed that tartrazine adsorption was spontaneous in all temperatures (ΔG< 0), endothermic (ΔH=30.816 kJ/mol), and feasible process with slight increase of entropy (ΔS=0.116 kJ/ mol/K). Moreover, the adsorbent application in wastewater and its regeneration studies depicted that the nanocomposite can be applied as an effective adsorbent (R%>89), magnetic separable and reusable adsorbent (R%>50 after the sixth regeneration cycle) in environmental cleanup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Christie, “Environmental Aspects of Textile Dyeing”, Woodhead Publishing Limited, England, 2007.

    Book  Google Scholar 

  2. N. Modirshahla, A. Hassani, M. A. Behnajady, and R. Rahbarfam, Desalination, 271, 187 (2011).

    Article  CAS  Google Scholar 

  3. A. Mittal, J. Mittal, and L. Kurup, J. Hazard. Mater., 136, 567 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. M. O. Dawodu and K. G. Akpomie, Alexandria Eng. J., 55, 3211 (2016).

    Article  Google Scholar 

  5. N. Mohammadi, H. Khani, V. K. Gupta, E. Amereh, and S. Agarwal, J. Colloid Interface Sci., 362, 457 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. R. Saravanan, S. Joicy, V. Gupta, V. Narayanan, and A. Stephen, Mater. Sci. Eng., C, 33, 4725 (2013).

    Article  CAS  Google Scholar 

  7. R. Saravanan, N. Karthikeyan, V. Gupta, E. Thirumal, P. Thangadurai, V. Narayanan, and A. Stephen, Mater. Sci. Eng., C, 33, 2235 (2013).

    Article  CAS  Google Scholar 

  8. R. Saravanan, S. Karthikeyan, V. Gupta, G. Sekaran, V. Narayanan, and A. Stephen, Mater. Sci. Eng., C, 33, 91 (2013).

    Article  CAS  Google Scholar 

  9. V. K. Gupta, R. Jain, A. Nayak, S. Agarwal, and M. Shrivastava, Mater. Sci. Eng., C, 31, 1062 (2011).

    Article  CAS  Google Scholar 

  10. R. Saravanan, E. Sacari, F. Gracia, M. M. Khan, E. Mosquera, and V. K. Gupta, J. Mol. Liq., 221, 1029 (2016).

    Article  CAS  Google Scholar 

  11. R. Saravanan, V. Gupta, E. Mosquera, and F. Gracia, J. Mol. Liq., 198, 409 (2014).

    Article  CAS  Google Scholar 

  12. R. Saravanan, V. K. Gupta, V. Narayanan, and A. Stephen, J. Mol. Liq., 181, 133 (2013).

    Article  CAS  Google Scholar 

  13. R. Saravanan, E. Thirumal, V. Gupta, V. Narayanan, and A. Stephen, J. Mol. Liq., 177, 394 (2013).

    Article  CAS  Google Scholar 

  14. R. Saravanan, V. Gupta, V. Narayanan, and A. Stephen, J. Taiwan Inst. Chem. Eng., 45, 1910 (2014).

    Article  CAS  Google Scholar 

  15. R. Saravanan, M. M. Khan, V. K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, and A. Stephen, J. Colloid Interface Sci., 452, 126 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. T. A. Saleh and V. K. Gupta, J. Colloid Interface Sci., 371, 101 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. R. Saravanan, M. M. Khan, V. K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, and A. Stephen, RSC Adv., 5, 34645 (2015).

    Article  CAS  Google Scholar 

  18. T. A. Saleh and V. K. Gupta, J. Colloid Interface Sci., 362, 337 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. S. Rajendran, M. M. Khan, F. Gracia, J. Qin, V. K. Gupta, and S. Arumainathan, Sci. Rep., 6, 31641 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A. Mittal, J. Mittal, A. Malviya, and V. Gupta, J. Colloid Interface Sci., 344, 497 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. T. A. Saleh and V. K. Gupta, Adv. Colloid Interface Sci., 211, 93 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. M. Ghaedi, S. Hajjati, Z. Mahmudi, I. Tyagi, S. Agarwal, A. Maity, and V. K. Gupta, Chem. Eng. J., 268, 28 (2015).

    Article  CAS  Google Scholar 

  23. V. K. Gupta, I. Ali, T. A. Saleh, M. Siddiqui, and S. Agarwal, Environ. Sci. Pollut. Res., 20, 1261 (2013).

    Article  CAS  Google Scholar 

  24. V. K. Gupta, S. I. Tyagi, S. Agarwal, R. Singh, M. Chaudhary, A. Harit, and S. Kushwaha, Global J. Environ. Sci. Manage., 2, 1 (2016).

    CAS  Google Scholar 

  25. A. Asfaram, M. Ghaedi, S. Agarwal, I. Tyagi, and V. K. Gupta, RSC Adv., 5, 18438 (2015).

    Article  CAS  Google Scholar 

  26. Y. Guo, J. Deng, J. Zhu, X. Zhou, and R. Bai, RSC Adv., 6, 82523 (2016).

    Article  CAS  Google Scholar 

  27. M. Ahmaruzzaman and V. K. Gupta, Ind. Eng. Chem. Res., 50, 13589 (2011).

    Article  CAS  Google Scholar 

  28. R. K. Gautam, P. K. Gautam, S. Banerjee, V. Rawat, S. Soni, S. K. Sharma, and M. C. Chattopadhyaya, J. Environ. Chem. Eng., 3, 79 (2015).

    Article  CAS  Google Scholar 

  29. Y. Zhao, K. Xia, Z. Zhang, Z. Zhu, Y. Guo, and Z. Qu, Nanomaterials, 9, 455 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  30. X. Wang, Z. Zhang, Y. Zhao, K. Xia, Y. Guo, Z. Qu, and R. Bai, Nanomaterials, 8, 673 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  31. H. Zhu, Y. Shen, Q. Wang, K. Chen, X. Wang, G. Zhang, J. Yang, Y. Guo, and R. Bai, RSC Adv., 7, 39204 (2017).

    Article  CAS  Google Scholar 

  32. K. Chen, Z. Zhang, K. Xia, X. Zhou, Y. Guo, and T. Huang, ACS Omega, 4, 8568 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. V. K. Gupta, N. Atar, M. L. Yola, Z. Üstündağ, and L. Uzun, Water Res., 48, 210 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Z. Zhang, K. Xia, Z. Pan, C. Yang, X. Wang, G. Zhang, Y. Guo, and R. Bai, Appl. Surface Sci., 500, 143970 (2020).

    Article  CAS  Google Scholar 

  35. K. Xia, Y. Guo, Q. Shao, Q. Zan, and R. Bai, Nanomaterials, 9, 1532 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  36. P. Qiao, B. Zhao, and Z. Nan, Mater. Sci. Eng. B, 178, 1476 (2013).

    Article  CAS  Google Scholar 

  37. M. Bhaumik, R. McCrindle, and A. Maity, Chem. Eng. J., 228, 506 (2013).

    Article  CAS  Google Scholar 

  38. C. Zhou, H. Zhu, Q. Wang, J. Wang, J. Cheng, Y. Guo, X. Zhou, and R. Bai, RSC Adv., 7, 18466 (2017).

    Article  CAS  Google Scholar 

  39. B. K. Kang, B. S. Lim, Y. Yoon, S. H. Kwag, W. K. Park, Y. H. Song, W. S. Yang, Y. T. Ahn, J. W. Kang, and D. H. Yoon, J. Environ. Manage, 201, 286 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Y. Wang, Y. Huang, and J. Ding, Synth. Met., 196, 125 (2014).

    Article  CAS  Google Scholar 

  41. A. A. Aziz, Y. H. Yau, G. L. Puma, C. Fischer, S. Ibrahim, and S. Pichiah, Chem. Eng. J., 235, 264 (2014).

    Article  CAS  Google Scholar 

  42. C. Zhang, Q. Li, and Y. Ye, Synth. Met., 159, 1008 (2009).

    Article  CAS  Google Scholar 

  43. M. Kalra and S. Singh, J. Egypt. Inform. J., 16, 275 (2015).

    Google Scholar 

  44. E. A. Dil, M. Ghaedi, A. Asfaram, F. Mehrabi, A. A. Bazrafshan, and A. M. Ghaedi, Ultrason. Sonochem., 33, 129 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. M. Farajvand, V. Kiarostami, M. Davallo, and A. Ghaedi, Bull. Environ. Contam. Toxicol., 100, 402 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. X.-S. Yang in “A New Metaheuristic Bat-Inspired Algorithm” (J. R. González, J. R. González, D. A. Pelta, C. Cruz, G. Terrazas, and N. Krasnogor Eds.), pp.65–74, Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), Springer-Verlag Berlin Heidelberg, 2010.

    Chapter  Google Scholar 

  47. A. M. Taha, A. Mustapha, and S.-D. Chen, Sci. World J., 2013, Article ID 325973 (2013).

  48. A. O. Topal and O. Altun, Inform. Sci., 354, 222 (2016).

    Article  Google Scholar 

  49. J. Luo, Y. Xu, and H. Mao, J. Magn. Magn. Mater., 381, 365 (2015).

    Article  CAS  Google Scholar 

  50. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).

    Article  CAS  Google Scholar 

  51. Y. Guo, Z. Wang, X. Zhou, and R. Bai, Res. Chem. Intermediat., 43, 2273 (2017).

    Article  CAS  Google Scholar 

  52. S. Bajpai, S. K. Gupta, A. Dey, M. K. Jha, V. Bajpai, S. Joshi, and A. Gupta, J. Hazard. Mater., 227-228, 436 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. S. M. J. Pappu and S. N. Gummadi, Biochem. Eng. J., 120, 136 (2017).

    Article  CAS  Google Scholar 

  54. X.-S. Yang and J. P. Papa, “Bio-Inspired Computation and Applications in Image Processing”, Academic Press, 2016.

  55. C. Zhang, Q. Li, and Y. Ye, Synth. Met., 159, 1008 (2009).

    Article  CAS  Google Scholar 

  56. V. K. Gupta, A. Nayak, S. Agarwal, and I. Tyagi, J. Colloid Interface Sci., 417, 420 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. R. M. Ali, H. A. Hamad, M. M. Hussein, and G. F. Malash, Ecol. Eng., 91, 317 (2016).

    Article  Google Scholar 

  58. M. Ghaedi, E. Shojaeipour, A. M. Ghaedi, and R. Sahraei, Spectrochim. Acta, Part A, 142, 135 (2015).

    Article  CAS  Google Scholar 

  59. S. Qiao, Q. Hu, F. Haghseresht, X. Hu, and G. Q. Lu, Sep. Purif. Technol., 67, 218 (2009).

    Article  CAS  Google Scholar 

  60. V. K. Gupta, R. Jain, M. Shrivastava, and A. Nayak, J. Chem. Eng. Data, 55, 5083 (2010).

    Article  CAS  Google Scholar 

  61. R. Ansari, M. B. Keivani, and A. F. Delavar, J. Polym. Res., 18, 1939 (2011).

    Article  CAS  Google Scholar 

  62. M. Jibril, J. Noraini, L. S. Poh, and A. Evuti, Journal Teknologi (Sciences and Engineering), 60, 15 (2013).

    Google Scholar 

  63. S. Banerjee and M. C. Chattopadhyaya, Arabian J. Chem., 10, S1629 (2017).

    Article  CAS  Google Scholar 

  64. J. Goscianska and R. Pietrzak, Catal. Today, 249, 259 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Kiarostami.

Electronic supplementary material

12221_2021_8163_MOESM1_ESM.pdf

Optimization of Tartrazine Adsorption onto Polypyrrole/SrFe12O19/Graphene Oxide Nanocomposite Using Central Composite Design and Bat Inspired Algorithm with the Aid of Artificial Neural Networks

12221_2021_8163_MOESM2_ESM.pdf

Optimization of Tartrazine Adsorption onto Polypyrrole/SrFe12O19/Graphene Oxide Nanocomposite Using Central Composite Design and Bat Inspired Algorithm with the Aid of Artificial Neural Networks

12221_2021_8163_MOESM3_ESM.pdf

Optimization of Tartrazine Adsorption onto Polypyrrole/SrFe 12O19/Graphene Oxide Nanocomposite Using Central Composite Design and Bat Inspired Algorithm with the Aid of Artificial Neural Networks

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimpoor, S., Kiarostami, V., Khosravi, M. et al. Optimization of Tartrazine Adsorption onto Polypyrrole/SrFe12O19/Graphene Oxide Nanocomposite Using Central Composite Design and Bat Inspired Algorithm with the Aid of Artificial Neural Networks. Fibers Polym 22, 159–170 (2021). https://doi.org/10.1007/s12221-021-8163-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-8163-9

Keywords

Navigation