Optimization of Tartrazine Adsorption onto Polypyrrole/SrFe12O19/Graphene Oxide Nanocomposite Using Central Composite Design and Bat Inspired Algorithm with the Aid of Artificial Neural Networks

Abstract

This project was aimed to focus on the application of bat inspired algorithm with the aid of artificial neural networks (ANN-BA) as a novel metaheuristic algorithm in chemistry and environmental sciences for optimization of tartrazine dye adsorption onto the polypyrrole/SrFe12O19/graphene oxide (PPy/SrM/GO) nanocomposite from aqueous solutions. The PPy/SrM/GO nanocomposite was fabricated by an in situ polymerization process and its structural and magnetic properties were studied by means of several instrumental techniques. Four factors affecting adsorption process were optimized in a batch system by ANN-BA and central composite design (CCD). In comparison to the CCD, the ANN- BA model obtained through levenberg marquardt back propagation methodology, gave higher percentage removal (94 %) about 6 %. Under optimal conditions obtained by ANN-BA, the values of four factors including initial concentration, adsorbent dosage, pH, and shaking rate were 15 mg/l, 0.02 g, 6.5, and 297 rpm, respectively. In the above conditions, the experimental results were fitted well to the pseudo-second-order kinetic model with the rate constant (k2) of 0.038 g/mg/min and the Langmuir adsorption isotherm with monolayer maximum capacity (qm) of 123.5 mg/g with determination coefficients (R2) of 0.9986 and 0.9989, respectively. Thermodynamic studies revealed that tartrazine adsorption was spontaneous in all temperatures (ΔG< 0), endothermic (ΔH=30.816 kJ/mol), and feasible process with slight increase of entropy (ΔS=0.116 kJ/ mol/K). Moreover, the adsorbent application in wastewater and its regeneration studies depicted that the nanocomposite can be applied as an effective adsorbent (R%>89), magnetic separable and reusable adsorbent (R%>50 after the sixth regeneration cycle) in environmental cleanup.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. M. Christie, “Environmental Aspects of Textile Dyeing”, Woodhead Publishing Limited, England, 2007.

    Google Scholar 

  2. 2.

    N. Modirshahla, A. Hassani, M. A. Behnajady, and R. Rahbarfam, Desalination, 271, 187 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    A. Mittal, J. Mittal, and L. Kurup, J. Hazard. Mater., 136, 567 (2006).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    M. O. Dawodu and K. G. Akpomie, Alexandria Eng. J., 55, 3211 (2016).

    Article  Google Scholar 

  5. 5.

    N. Mohammadi, H. Khani, V. K. Gupta, E. Amereh, and S. Agarwal, J. Colloid Interface Sci., 362, 457 (2011).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    R. Saravanan, S. Joicy, V. Gupta, V. Narayanan, and A. Stephen, Mater. Sci. Eng., C, 33, 4725 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    R. Saravanan, N. Karthikeyan, V. Gupta, E. Thirumal, P. Thangadurai, V. Narayanan, and A. Stephen, Mater. Sci. Eng., C, 33, 2235 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    R. Saravanan, S. Karthikeyan, V. Gupta, G. Sekaran, V. Narayanan, and A. Stephen, Mater. Sci. Eng., C, 33, 91 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    V. K. Gupta, R. Jain, A. Nayak, S. Agarwal, and M. Shrivastava, Mater. Sci. Eng., C, 31, 1062 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    R. Saravanan, E. Sacari, F. Gracia, M. M. Khan, E. Mosquera, and V. K. Gupta, J. Mol. Liq., 221, 1029 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    R. Saravanan, V. Gupta, E. Mosquera, and F. Gracia, J. Mol. Liq., 198, 409 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    R. Saravanan, V. K. Gupta, V. Narayanan, and A. Stephen, J. Mol. Liq., 181, 133 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    R. Saravanan, E. Thirumal, V. Gupta, V. Narayanan, and A. Stephen, J. Mol. Liq., 177, 394 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    R. Saravanan, V. Gupta, V. Narayanan, and A. Stephen, J. Taiwan Inst. Chem. Eng., 45, 1910 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    R. Saravanan, M. M. Khan, V. K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, and A. Stephen, J. Colloid Interface Sci., 452, 126 (2015).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    T. A. Saleh and V. K. Gupta, J. Colloid Interface Sci., 371, 101 (2012).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    R. Saravanan, M. M. Khan, V. K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, and A. Stephen, RSC Adv., 5, 34645 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    T. A. Saleh and V. K. Gupta, J. Colloid Interface Sci., 362, 337 (2011).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    S. Rajendran, M. M. Khan, F. Gracia, J. Qin, V. K. Gupta, and S. Arumainathan, Sci. Rep., 6, 31641 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    A. Mittal, J. Mittal, A. Malviya, and V. Gupta, J. Colloid Interface Sci., 344, 497 (2010).

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    T. A. Saleh and V. K. Gupta, Adv. Colloid Interface Sci., 211, 93 (2014).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    M. Ghaedi, S. Hajjati, Z. Mahmudi, I. Tyagi, S. Agarwal, A. Maity, and V. K. Gupta, Chem. Eng. J., 268, 28 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    V. K. Gupta, I. Ali, T. A. Saleh, M. Siddiqui, and S. Agarwal, Environ. Sci. Pollut. Res., 20, 1261 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    V. K. Gupta, S. I. Tyagi, S. Agarwal, R. Singh, M. Chaudhary, A. Harit, and S. Kushwaha, Global J. Environ. Sci. Manage., 2, 1 (2016).

    CAS  Google Scholar 

  25. 25.

    A. Asfaram, M. Ghaedi, S. Agarwal, I. Tyagi, and V. K. Gupta, RSC Adv., 5, 18438 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Y. Guo, J. Deng, J. Zhu, X. Zhou, and R. Bai, RSC Adv., 6, 82523 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    M. Ahmaruzzaman and V. K. Gupta, Ind. Eng. Chem. Res., 50, 13589 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    R. K. Gautam, P. K. Gautam, S. Banerjee, V. Rawat, S. Soni, S. K. Sharma, and M. C. Chattopadhyaya, J. Environ. Chem. Eng., 3, 79 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Y. Zhao, K. Xia, Z. Zhang, Z. Zhu, Y. Guo, and Z. Qu, Nanomaterials, 9, 455 (2019).

    CAS  PubMed Central  Article  Google Scholar 

  30. 30.

    X. Wang, Z. Zhang, Y. Zhao, K. Xia, Y. Guo, Z. Qu, and R. Bai, Nanomaterials, 8, 673 (2018).

    PubMed Central  Article  CAS  Google Scholar 

  31. 31.

    H. Zhu, Y. Shen, Q. Wang, K. Chen, X. Wang, G. Zhang, J. Yang, Y. Guo, and R. Bai, RSC Adv., 7, 39204 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    K. Chen, Z. Zhang, K. Xia, X. Zhou, Y. Guo, and T. Huang, ACS Omega, 4, 8568 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    V. K. Gupta, N. Atar, M. L. Yola, Z. Üstündağ, and L. Uzun, Water Res., 48, 210 (2014).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Z. Zhang, K. Xia, Z. Pan, C. Yang, X. Wang, G. Zhang, Y. Guo, and R. Bai, Appl. Surface Sci., 500, 143970 (2020).

    CAS  Article  Google Scholar 

  35. 35.

    K. Xia, Y. Guo, Q. Shao, Q. Zan, and R. Bai, Nanomaterials, 9, 1532 (2019).

    CAS  PubMed Central  Article  Google Scholar 

  36. 36.

    P. Qiao, B. Zhao, and Z. Nan, Mater. Sci. Eng. B, 178, 1476 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    M. Bhaumik, R. McCrindle, and A. Maity, Chem. Eng. J., 228, 506 (2013).

    CAS  Article  Google Scholar 

  38. 38.

    C. Zhou, H. Zhu, Q. Wang, J. Wang, J. Cheng, Y. Guo, X. Zhou, and R. Bai, RSC Adv., 7, 18466 (2017).

    CAS  Article  Google Scholar 

  39. 39.

    B. K. Kang, B. S. Lim, Y. Yoon, S. H. Kwag, W. K. Park, Y. H. Song, W. S. Yang, Y. T. Ahn, J. W. Kang, and D. H. Yoon, J. Environ. Manage, 201, 286 (2017).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Y. Wang, Y. Huang, and J. Ding, Synth. Met., 196, 125 (2014).

    CAS  Article  Google Scholar 

  41. 41.

    A. A. Aziz, Y. H. Yau, G. L. Puma, C. Fischer, S. Ibrahim, and S. Pichiah, Chem. Eng. J., 235, 264 (2014).

    Article  CAS  Google Scholar 

  42. 42.

    C. Zhang, Q. Li, and Y. Ye, Synth. Met., 159, 1008 (2009).

    CAS  Article  Google Scholar 

  43. 43.

    M. Kalra and S. Singh, J. Egypt. Inform. J., 16, 275 (2015).

    Google Scholar 

  44. 44.

    E. A. Dil, M. Ghaedi, A. Asfaram, F. Mehrabi, A. A. Bazrafshan, and A. M. Ghaedi, Ultrason. Sonochem., 33, 129 (2016).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    M. Farajvand, V. Kiarostami, M. Davallo, and A. Ghaedi, Bull. Environ. Contam. Toxicol., 100, 402 (2018).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    X.-S. Yang in “A New Metaheuristic Bat-Inspired Algorithm” (J. R. González, J. R. González, D. A. Pelta, C. Cruz, G. Terrazas, and N. Krasnogor Eds.), pp.65–74, Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), Springer-Verlag Berlin Heidelberg, 2010.

    Google Scholar 

  47. 47.

    A. M. Taha, A. Mustapha, and S.-D. Chen, Sci. World J., 2013, Article ID 325973 (2013).

  48. 48.

    A. O. Topal and O. Altun, Inform. Sci., 354, 222 (2016).

    Article  Google Scholar 

  49. 49.

    J. Luo, Y. Xu, and H. Mao, J. Magn. Magn. Mater., 381, 365 (2015).

    CAS  Article  Google Scholar 

  50. 50.

    W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).

    CAS  Article  Google Scholar 

  51. 51.

    Y. Guo, Z. Wang, X. Zhou, and R. Bai, Res. Chem. Intermediat., 43, 2273 (2017).

    CAS  Article  Google Scholar 

  52. 52.

    S. Bajpai, S. K. Gupta, A. Dey, M. K. Jha, V. Bajpai, S. Joshi, and A. Gupta, J. Hazard. Mater., 227-228, 436 (2012).

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    S. M. J. Pappu and S. N. Gummadi, Biochem. Eng. J., 120, 136 (2017).

    CAS  Article  Google Scholar 

  54. 54.

    X.-S. Yang and J. P. Papa, “Bio-Inspired Computation and Applications in Image Processing”, Academic Press, 2016.

  55. 55.

    C. Zhang, Q. Li, and Y. Ye, Synth. Met., 159, 1008 (2009).

    CAS  Article  Google Scholar 

  56. 56.

    V. K. Gupta, A. Nayak, S. Agarwal, and I. Tyagi, J. Colloid Interface Sci., 417, 420 (2014).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    R. M. Ali, H. A. Hamad, M. M. Hussein, and G. F. Malash, Ecol. Eng., 91, 317 (2016).

    Article  Google Scholar 

  58. 58.

    M. Ghaedi, E. Shojaeipour, A. M. Ghaedi, and R. Sahraei, Spectrochim. Acta, Part A, 142, 135 (2015).

    CAS  Article  Google Scholar 

  59. 59.

    S. Qiao, Q. Hu, F. Haghseresht, X. Hu, and G. Q. Lu, Sep. Purif. Technol., 67, 218 (2009).

    CAS  Article  Google Scholar 

  60. 60.

    V. K. Gupta, R. Jain, M. Shrivastava, and A. Nayak, J. Chem. Eng. Data, 55, 5083 (2010).

    CAS  Article  Google Scholar 

  61. 61.

    R. Ansari, M. B. Keivani, and A. F. Delavar, J. Polym. Res., 18, 1939 (2011).

    Article  CAS  Google Scholar 

  62. 62.

    M. Jibril, J. Noraini, L. S. Poh, and A. Evuti, Journal Teknologi (Sciences and Engineering), 60, 15 (2013).

    Google Scholar 

  63. 63.

    S. Banerjee and M. C. Chattopadhyaya, Arabian J. Chem., 10, S1629 (2017).

    CAS  Article  Google Scholar 

  64. 64.

    J. Goscianska and R. Pietrzak, Catal. Today, 249, 259 (2015).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vahid Kiarostami.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ebrahimpoor, S., Kiarostami, V., Khosravi, M. et al. Optimization of Tartrazine Adsorption onto Polypyrrole/SrFe12O19/Graphene Oxide Nanocomposite Using Central Composite Design and Bat Inspired Algorithm with the Aid of Artificial Neural Networks. Fibers Polym 22, 159–170 (2021). https://doi.org/10.1007/s12221-021-8163-9

Download citation

Keywords

  • Polypyrrole composite
  • Strontium hexaferrite
  • Graphene oxide
  • Tartrazine
  • Bat inspired algorithm