Investigation of a Widely Applicable Process for Extracting Carboxyl-rich Cellulose Nanocrystal (CNC)

Abstract

Herein, carboxyl-rich cellulose nanocrystals (CNC) were obtained through a designed TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) mediated oxidation process without any subsequent mechanical treatment, which was proved to be widely suitable for commonly used cellulosic sources, including fibril-like fibers and lignocellulose biomasses. CNC prepared from the acid-free process showed better dispersion stability, less aggregation, higher aqueous UV transmittance and crystallinity compared with that from sulfuric acid hydrolysis process. Furthermore, the residuals in the insoluble precipitate were further conducted ultrasonic treatment and extra CNC was obtained from the oxidized cotton and ramie cellulose while cellulose nanofibril (CNF) was extracted from rice straw and pine powder, attributing to their different native structures. The total yields of nanocelluloses (NCs) were up to 63.2–68.3 %, improving the utilization ratio of the raw materials. This work provided a widely applicable acid- and mechanic-free route in fabricating CNC with inherent carboxyl groups and described an understanding of the relationship between the native structure of raw materials and their products, which is beneficial for improving the application of NCs.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    I. Sakurada, Y. Nukushina, and T. Ito, J. Polym. Sci. Part A Polym. Chem., 57, 651 (1962).

    CAS  Google Scholar 

  2. 2.

    I. Shinichiro, K. Weihua, I. Akira, and I. Tadahisa, Biomacromolecules, 10, 2571 (2009).

    Article  Google Scholar 

  3. 3.

    Y. Habibi, L. A. Lucia, and O. J. Rojas, Chem. Rev., 110, 3479 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    G. Hayase, K. Kanamori, K. Abe, H. Yano, A. Maeno, H. Kaji, and K. Nakanishi, ACS Appl. Mater. Interfaces, 6, 9466 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    D. Bendahou, A. Bendahou, B. Seantier, Y. Grohens, and H. Kaddami, Ind. Crops Prod., 65, 374 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    A. Kafy, A. Akther, M. I. R. Shishir, H. C. Kim, Y. Yun, and J. Kim, Sens. Actuators A: Phys., 247, 221 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    H. Cheng, Y. Du, B. Wang, Z. Mao, H. Xu, L. Zhang, Y. Zhong, W. Jiang, L. Wang, and X. Sui, Chem. Eng. J., 338, 1 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    H. Cheng, Y. Li, B. Wang, Z. Mao, H. Xu, L. Zhang, Y. Zhong, and X. Sui, Cellulose, 25, 573 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    X. Yang, H. Liu, F. Han, S. Jiang, L. Liu, and Z. Xia, Carbohydr. Polym., 175, 464 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    A. Anžlovar, M. Huskić, and E. Žagar, Cellulose, 23, 505 (2016).

    Article  Google Scholar 

  11. 11.

    N. Ljungberg, J. Y. Cavaillé, and L. Heux, Polymer, 47, 6285 (2006).

    CAS  Article  Google Scholar 

  12. 12.

    H. Cheng, C. Li, Y. Jiang, B. Wang, F. Wang, Z. Mao, H. Xu, L. Wang, and X. Sui, J. Mater. Chem. B, 6, 634 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Y. L. Hsieh, J. Mater. Sci., 48, 7837 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    F. M. Pelissari, P. J. d. A. Sobral, and F. C. Menegalli, Cellulose, 21, 417 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    P. Lu and Y.-L. Hsieh, Powder Technology, 225, 149 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    J. Gu and Y.-L. Hsieh, ACS Sustain. Chem. Eng., 5, 1730 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    J. Lamaming, R. Hashim, O. Sulaiman, C. P. Leh, T. Sugimoto, and N. A. Nordin, Carbohydr. Polym., 127, 202 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Z. Wang, Z. Yao, J. Zhou, and Y. Zhang, Carbohydr. Polym., 157, 945 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    H. Wang, X. Zhang, Z. Jiang, W. Li, and Y. Yu, Ind. Crops Prod., 71, 80 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    A. Farooq, S. Jiang, A. Farooq, M. A. Naeem, A. Ahmad, and L. Liu, J. Ind. Text., 152808371988753 (2019).

  21. 21.

    M. L. Hassan, A. P. Mathew, E. A. Hassan, N. A. El-Wakil, and K. Oksman, Wood Sci. Technol., 46, 193 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    A. N. Frone, D. M. Panaitescu, D. Donescu, C. I. Spataru, C. Radovici, R. Trusca, and R. Somoghi, Bioresources, 6, 487 (2011).

    CAS  Google Scholar 

  23. 23.

    A. Isogai, T. Saito, and H. Fukuzumi, Nanoscale, 3, 71 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, Biomacromolecules, 8, 2485 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    X. Miao, J. Lin, F. Tian, X. Li, F. Bian, and J. Wang, Carbohydr. Polym., 136, 841 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    L. Van Hai, L. Zhai, H. C. Kim, J. W. Kim, E. S. Choi, and J. Kim, Carbohydr. Polym, 191, 65 (2018).

    CAS  Article  Google Scholar 

  27. 27.

    Y. Liu, H. Wang, G. Yu, Q. Yu, B. Li, and X. Mu, Carbohydr. Polym., 110, 415 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Y. Zhou, T. Saito, L. Bergström, and A. Isogai, Biomacromolecules, 19, 633 (2018).

    CAS  Article  Google Scholar 

  29. 29.

    W. Chen, H. Yu, Q. Li, Y. Liu, and J. Li, Soft Matter, 7, 10360 (2011).

    CAS  Article  Google Scholar 

  30. 30.

    P. Lu and Y.-L. Hsieh, Carbohydr. Polym., 87, 564 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    D. A. Osorio, B. Seifried, P. Moquin, K. Grandfield, and E. D. Cranston, J. Mater. Sci., 53, 9842 (2018).

    CAS  Article  Google Scholar 

  32. 32.

    F. Jiang and Y.-L. Hsieh, ACS Sustain. Chem. Eng., 4, 1041 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, Text. Res. J., 29, 786 (1959).

    CAS  Article  Google Scholar 

  34. 34.

    X. Yang, F. Han, C. Xu, S. Jiang, L. Huang, L. Liu, and Z. Xia, Ind. Crops Prod., 109, 241 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    J. X. Sun, X. F. Sun, H. Zhao, and R. C. Sun, Polym. Degrad. Stabil., 84, 331 (2004).

    CAS  Article  Google Scholar 

  36. 36.

    A. Orue, A. Santamaria-Echart, A. Eceiza, C. Peña-Rodriguez, and A. Arbelaiz, J. Appl. Polym. Sci., 134, 45257 (2017).

    Article  Google Scholar 

  37. 37.

    C. Du, H. L. Li, B. Y. Li, M. R. Liu, and H. Y. Zhan, Bioresources, 11, 5276 (2016).

    CAS  Google Scholar 

  38. 38.

    H. Fukuzumi, T. Saito, Y. Okita, and A. Isogai, Polym. Degrad. Stabil., 95, 1502 (2010).

    CAS  Article  Google Scholar 

  39. 39.

    P. Lu and Y.-L. Hsieh, Carbohydr. Polym., 82, 329 (2010).

    Article  Google Scholar 

  40. 40.

    D. K. Shen and S. Gu, Bioresource Technol., 100, 6496 (2009).

    CAS  Article  Google Scholar 

  41. 41.

    X. Cao, B. Ding, J. Yu, and S. S. Al-Deyab, Carbohydr. Polym., 90, 1075 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Project No. 2018YFC2000900) and the Fundamental Research Funds for the Central Universities (Project No. 2232018A3-04).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lifang Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Farooq, A., Han, F. et al. Investigation of a Widely Applicable Process for Extracting Carboxyl-rich Cellulose Nanocrystal (CNC). Fibers Polym (2021). https://doi.org/10.1007/s12221-021-0279-4

Download citation

Keywords

  • Cellulose nanocrystal (CNC)
  • Cellulose nanofibril (CNF)
  • Extraction process
  • Biomass
  • Native structure