Novel Hybrid Nanostructures of Carbon Nanotube/Fullerene-like Tungsten Disulfide as Reinforcement for Aramid Fabric Composites

Abstract

Multilayered composites based on aramid fabrics are widely used in impact protection. The objective of this study is creating a new kind of multiaxial aramid fabric composites with inorganic fullerene-like tungsten disulfide nanoparticles (IF-WS2) and single walled carbon nanotubes (SWCNT) used as nanoreinforcement to enhance the dynamic mechanical and anti-stabbing properties of the composites. The four composites of the Kolon fabric forms were impregnated with 10 wt.% poly(vinyl butyral) (PVB)/ethanol solution which contained different forms of IF-WS nanoparticles. The surfaces of IF-WS2 were coated with silane coupling agent (m-IF) and the SWCNT were oxidized (o-SWCNT) for the fabrication of the o-SWCNT/m-IF hybrid nanoparticles. The mechanical testing showed that the Kolon/PVB/o-SWCNT/m-IF sample produced nearly 62 % of improvement in the tensile strength and 51 % of improvement in the tensile energy absorption compared to the Kolon/PVB sample. Furthermore, the sample with the o-SWCNT/m-IF hybrid nanoparticles demonstrated 24 % of enhancement in the impact toughness and 48 % of improvement in the absorbed energy after knife penetration in comparison with the Kolon/PVB sample.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. M. Torki, D. B. Stojanović, I. D. Živković, A. Marinković, S. D. Škapin, P. S. Uskoković, and R. R. Aleksić, Polym. Compos., 33, 158 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    D. B. Stojanović, M. Zrilić, R. Jančić-Heinemann, I. Živković, A. Kojović, P. S. Uskoković, and R. Aleksić, Polym. Adv. Technol., 24, 772 (2013).

    Article  CAS  Google Scholar 

  3. 3.

    J. S. Lim, B. H. Lee, C. B. Lee, and I.-S. Han, Engineering, 4, 944 (2012).

    Article  Google Scholar 

  4. 4.

    A. M. Torki, Ph. D. Dissertation, University of Belgrade, Belgrade, 2012.

  5. 5.

    F. A. Alzarrug, D. B. Stojanovic, V. Obradovic, A. Kojovic, M. Rajilic-Stojanovic, and P. S. Uskokovic, Polym. Adv. Technol., 28, 909 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    A. M. Torki, I. Živković, V. R. Radmilović, D. B. Stojanović, V. J. Radojević, P. S. Uskoković, and R. R. Aleksić, I. J. M. P. B., 24, 805 (2010).

    CAS  Google Scholar 

  7. 7.

    M. Terrones, Annu. Rev. Mater. Res., 33, 419 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    W. Xue and P. Li in “Carbon Nanotubes — Synthesis, Characterization, Applications” (S. Yellampalli Ed.), p.171, InTech, London, 2011.

  9. 9.

    A. Eftekhari, J. Mater. Chem. A, 5, 18299 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    R. Tenne, L. Margulis, M. Genut, and G. Hodes, Nature, 360, 444 (1992).

    CAS  Article  Google Scholar 

  11. 11.

    L. Rapoport, N. Fleischer, and R. Tenne, J. Mater. Chem., 15, 1782 (2005).

    CAS  Article  Google Scholar 

  12. 12.

    L. Rapoport, N. Fleischer, and R. Tenne, Adv. Mater., 15, 651 (2003).

    CAS  Article  Google Scholar 

  13. 13.

    M. Naffakh, A. M. Dı’ez-Pascual, C. Marco, G. J. Ellis, and M. A. Gómez-Fatou, Prog. Polym. Sci., 38, 1163 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    C. Shahar, D. Zbaida, L. Rapoport, H. Cohen, T. Bendikov, J. Tannous, F. Dassenoy, and R. Tenne, Langmuir, 26, 4409 (2010).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    M. Shneider, H. Dodiuk, R. Tenne, and S. Kenig, Polym. Eng. Sci., 53, 2624 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    A. Buchman, H. Dodiuk, A. Dotan, R. Tenne, and S. Kenig, J. Adhes. Sci. Technol., 23, 753 (2009).

    Article  Google Scholar 

  17. 17.

    E. Zohar, S. Baruch, M. Shneider, H. Dodiuk, S. Kenig, R. Tenne, and H. Daniel Wagner, J. Adhes. Sci. Technol., 25, 1603 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    M. Naffakh, C. Marco, M. A. Gómez, J. Gomez-Herrero, and I. Jimenez, J. Phys. Chem. B, 113, 10104 (2009).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    A. M. Díez-Pascual, M. Naffakh, C. Marco, and G. Ellis, Compos. Part. A — Appl. S., 43, 603 (2012).

    Article  CAS  Google Scholar 

  20. 20.

    M. Naffakh, C. Marco, M. A. Gómez, and I. Jiménez, Mater. Chem. Phys., 129, 641 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    X. Hou, C. X. Shan, and K. L. Choy, Surf. Coat. Technol., 202, 2287 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    M. Naffakh, A. M. Díez-Pascual, C. Marco, M. A. Gomez, and I. Jimenez, J. Phys. Chem. B, 114, 11444 (2010).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    C. S. Reddy, A. Zak, and E. Zussman, J. Mater. Chem., 21, 16086 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    M. Shneider, L. Rapoport, A. Moshkovich, H. Dodiuk, S. Kenig, R. Tenne, and A. Zak, Phys. Status. Solidi. A, 210, 2298 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    D. Haba, A. J. Brunner, and G. Pinter, Compos. Sci. Technol., 119, 55 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    D. Haba, A. J. Brunner, M. Barbezat, D. Spetter, W. Tremel, and G. Pinter, Eur. Polym. J., 84, 125 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    C. Luhrs, M. Moberg, A. Maxson, L. Brewer, and S. Menon, Inorganics, 2, 211 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    F. Gong, K. Bui, D. V. Papavassiliou, and H. M. Duong, Carbon, 78, 305 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    D. Simić, D. B. Stojanović, A. Kojović, M. Dimić, L. Totovski, P. S. Uskoković, and R. Aleksić, Mat. Chem. Phys., 184, 335 (2016).

    Article  CAS  Google Scholar 

  30. 30.

    D. M. Simic, D. B. Stojanovic, S. J. Brzic, L. Totovski, P. S. Uskokovic, and R. R. Aleksic, Compos. Part. B — Eng., 123, 10 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    D. M. Simić, D. B. Stojanović, M. Dimić, K. Mišković, M. Marjanović, Z. Burzić, P. S. Uskoković, A. Zak, and R. Tenne, Compos. Part. B — Eng., 176, 107222 (2019).

    Article  CAS  Google Scholar 

  32. 32.

    D. M. Simić, D. B. Stojanović, N. Ristović, M. Zrilić, Z. Burzić, M. Marjanović, P. S. Uskoković, and R. Aleksić in “Advanced Materials for Defense: Development, Analysis and Application” (R. Fangueiro and S. Rana Eds.), p.35, Springer Proceedings in Materials, Switzerland, 2019.

  33. 33.

    V. Obradović, D. B. Stojanović, B. Jokić, M. Zrilić, V. Radojević, P. S. Uskoković, and R. Aleksić, Compos. Part. B — Eng., 108, 143 (2017).

    Article  CAS  Google Scholar 

  34. 34.

    D. Haba, A. J. Brunner, T. Griesser, and U. Muller, J. Mater. Sci., 50, 5125 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    B. Ben Doudou, A. Vivet, J. Chen, A. Laachachi, T. Falher, and C. Poilâne, J. Polym. Res., 21, 420 (2014).

    Article  CAS  Google Scholar 

  36. 36.

    National Institute of Justice, Stab Resistance of Personal Body Armor, NIJ Standard — 0115.00, https://www.ncjrs.gov/pdffiles1/nij/183652.pdf. (Accessed January 5, 2020).

  37. 37.

    S. Ahmed Ben Hassan, D. B. Stojanović, A. Kojović, I. Janković Častvan, Đ. Janaćković, P. S. Uskoković, and R. Aleksić, Ceram. Int., 40, 1139 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    S. J. Hazarika and D. Mohanta, Appl. Phys. A-Mater., 123, 381 (2017).

    Article  CAS  Google Scholar 

  39. 39.

    S. V. P. Vattikuti and C. Byon, J. Nanomater., 2015, 1 (2015).

    Google Scholar 

  40. 40.

    W. D. Jr. Callister, “Materials Science and Engineering: An Introduction”, 7th eds., John Wiley & Sons, Inc., New York, 2007.

    Google Scholar 

  41. 41.

    R. S. Hill, Proc. Roy. Soc. London. Ser. A, 193, 260 (1948).

    Google Scholar 

  42. 42.

    R. Hill, “The Mathematical Theory of Plasticity”, 1st Edition, Oxford University press, Oxford, 1950.

    Google Scholar 

  43. 43.

    M. K. Budinski, Case. Stud. Eng. Fail. Anal., 1, 156 (2013).

    Article  Google Scholar 

  44. 44.

    E. Bostock, G. Michael, B. Parkes, and G. Williams, J. Forensic. Res., 4, 1000197 (2013).

    Google Scholar 

  45. 45.

    S. Sharma, S. R. Dhakate, A. Majumdar, and B. P. Singh, Carbon, 152, 631 (2019).

    CAS  Article  Google Scholar 

  46. 46.

    S. Sharma, A. K. Pathak, V. N. Singh, S. Teotia, S. R. Dhakate, and B. P. Singh, Carbon, 137, 104 (2018).

    CAS  Article  Google Scholar 

  47. 47.

    G. W. Ehrenstein, G. Riedel, and P. Trawiel, “Thermal Analysis of Plastics: Theory and Practice”, Hanser Gardner Pubns, Munich, 2004.

    Google Scholar 

  48. 48.

    Y. C. Lu, Int. J. Mech. Mater. Des., 3, 329 (2006).

    Article  Google Scholar 

  49. 49.

    V. Obradović, D. B. Stojanović, I. Janković Častvan, V. Radojević, and P. S. Uskoković, Fiber. Polym., 19, 1921 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract Nos. 451-03-68/2020-14/200287 and 451-03-68/2020-14/200325). The authors would also like to acknowledge the contribution of the COST Action CA18120.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dušica B. Stojanović.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Obradović, V., Simić, D., Zrilić, M. et al. Novel Hybrid Nanostructures of Carbon Nanotube/Fullerene-like Tungsten Disulfide as Reinforcement for Aramid Fabric Composites. Fibers Polym 22, 528–539 (2021). https://doi.org/10.1007/s12221-021-0278-5

Download citation

Keywords

  • Aramid fibers
  • Silane coating
  • o-SWCNT/m-IF hybrid nanoparticles
  • Anti-stabbing properties
  • Thermomechanical analysis