Skip to main content
Log in

Evaluation of Some Comfort and Mechanical Properties of Knitted Fabrics Made of Different Regenerated Cellulosic Fibres

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Knitted fabrics with a wide range of fabric construction varying in fibre type, yarn type is frequently preferred by consumers owing to their high comfort properties. Today new, functional and biodegradable, natural fibre based raw materials are mostly considered for knitted fabrics and clothing designs with a sustainable consumer manner. Collagen peptide added fibres are the recent improved regenerated cellulosic fibres which are known to be providing a skin friendly texture with high thermal and moisture comfort. Within this study, some performance properties such as thermal properties, water vapour permeability, water vapour resistance, air permeability as well as bursting strength of greige and dyed knitted samples made of 100 % Tencel™, Modal, Cupro, Umorfil®, combed cotton and carded cotton yarn were evaluated. ANOVA test was performed for the statistical evaluation of yarn and fabric properties. According to ANOVA results, regenerated cellulosic yarn type of knitted fabrics and the process type (untreated greige fabric or dyed fabric) were generally significant factors on mentioned performance properties of knitted fabrics. The results of experiments also revealed that beside the regenerated cellulosic fibres, new developed collagen peptide added Umorfil® fibre may be used as the raw material of knitted fabrics for sport garments with satisfying comfort results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Song, “Improving Comfort in Clothing”, Cambridge: Woodhead Publishing, 2011.

    Book  Google Scholar 

  2. T. Röder, J. Moosbauer, K. Wöss, S. Schlader, and G. Kraft, Lenzinger Berichte, 91, 7 (2013).

    Google Scholar 

  3. J. C. Sakthivel and N. Anbumani, J. Text. App. Technol. Manag., 7, 1 (2012).

    Google Scholar 

  4. E. Dirgar, J. Text. Apparel/Tekstil ve Konfeksiyon, 27, 139 (2017).

    Google Scholar 

  5. S. Bhardwaj and S. Juneja, Studies on Home and Community Science, 6, 33 (2012).

    Article  Google Scholar 

  6. http://www.kelheim-fibres.com/produkte/vi_te_uk.php (Assessed March 11, 2018).

  7. H. Firgo, K. C. Schuster, F. Suchomel, J. Männer, T. Burrow, and M. Abu Rous, Lenzinger Berichte, 85, 22 (2012).

    Google Scholar 

  8. https://en.wikipedia.org/wiki/Cuprammonium_rayon (Assessed December 5, 2019).

  9. G. Ö. Kayseri, F. Bozdoğan, and H. E. S. Lubos, J. Text. Apparel/Tekstil ve Konfeksiyon, 20, 208 (2010).

    Google Scholar 

  10. S. S. Bhattacharya and J. R. Ajmeri, Int. J. Eng. Res. Devel., 10, 16 (2014).

    Google Scholar 

  11. A. Basit, W. Latif, M. Ashraf, A. Rehman, K. Iqbal, H. S. Maqsood, and S. A. Baig, Autex Res. J., 19, 80 (2019).

    Article  CAS  Google Scholar 

  12. V. Rajanbabu and J. Y. Chen, Peptides, 32, 415 (2011).

    Article  CAS  Google Scholar 

  13. L. Najafian and A. S. Babji, Peptides, 33, 178 (2012).

    Article  CAS  Google Scholar 

  14. S. Chattopadhyay and R. T. Raines, Biopolymers, 101, 821 (2014).

    Article  CAS  Google Scholar 

  15. Beauty Fiber® Intro 20170609, “Umorfil® Beuty Fiber® Intro 20170609” (Assessed December 5, 2018).

  16. TS EN ISO 139:2006, Standard Atmospheres for Conditioning and Testing, 2006.

  17. E. Karaca, N. Kahraman, S. Omeroglu, and B. Becerir, Fibres Text. East. Eur., 3, 67 (2012).

    Google Scholar 

  18. F. Güney and İ. Üçgül, J. Text. Apparel/Tekstil ve Konfeksiyon, 20, 9 (2010).

    Google Scholar 

  19. N. Oğlakçıoglu and A. Marmaralı, Fibres Text. East. Eur., 15, 64 (2007).

    Google Scholar 

  20. I. G. Frydrych, G. Dziworska, and J. Bilska, Fibres Text. East. Eur., 10, 40 (2002).

    CAS  Google Scholar 

  21. ISO-ISO 9237, “Textiles — Determination of the Permeability of Fabrics to Air”, Geneva Switzerland, 1995.

  22. ISO 13938-1, “Textiles — Bursting Properties of Fabrics — Part 1: Hydraulic Method for Determination of Bursting Strength and Bursting Distension”, Geneva, Switzerland, 1999.

  23. E. Akcagün, M. Bączek, and L. Hes, J. Nat. Fib., 16, 199 (2019).

    Article  Google Scholar 

  24. N. Özdil, A. Marmaralı, and S. D. Kretzschmar, Int. J. Thermal Sci., 46, 1318 (2007).

    Article  Google Scholar 

  25. J. H. Mecheels and K. H. Umbach in “The Psychometric Ranges of Clothing Systems’, Clothing Comfort: Interactions of Thermal, Ventilation, Construction and Assessment Factors” (A. Arbor Ed.), pp.133–166, MI: Ann Arbor Science Publishers, 1977.

  26. N. Oğlakcıoğlu and A. Marmaralı, J. Text. Eng., 17, 6 (2008).

    Google Scholar 

  27. E. Öner and A. Okur, The J. Tex. Inst., 106, 1403 (2015).

    Article  Google Scholar 

  28. M. Havlova, Fibres Text. East. Eur., 22, 58 (2014).

    Google Scholar 

  29. E. Sarıoğlu and O. Babaarslan, J. Eng. Fibers Fabrics, doi:https://doi.org/10.1177/1558925019837810 (2019).

  30. E. A. Elnashar, AUTEX Res. J., 5, 207 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gizem Karakan Günaydın.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çeven, E.K., Günaydın, G.K. Evaluation of Some Comfort and Mechanical Properties of Knitted Fabrics Made of Different Regenerated Cellulosic Fibres. Fibers Polym 22, 567–577 (2021). https://doi.org/10.1007/s12221-021-0246-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0246-0

Keywords

Navigation