Evaluation of Some Comfort and Mechanical Properties of Knitted Fabrics Made of Different Regenerated Cellulosic Fibres


Knitted fabrics with a wide range of fabric construction varying in fibre type, yarn type is frequently preferred by consumers owing to their high comfort properties. Today new, functional and biodegradable, natural fibre based raw materials are mostly considered for knitted fabrics and clothing designs with a sustainable consumer manner. Collagen peptide added fibres are the recent improved regenerated cellulosic fibres which are known to be providing a skin friendly texture with high thermal and moisture comfort. Within this study, some performance properties such as thermal properties, water vapour permeability, water vapour resistance, air permeability as well as bursting strength of greige and dyed knitted samples made of 100 % Tencel™, Modal, Cupro, Umorfil®, combed cotton and carded cotton yarn were evaluated. ANOVA test was performed for the statistical evaluation of yarn and fabric properties. According to ANOVA results, regenerated cellulosic yarn type of knitted fabrics and the process type (untreated greige fabric or dyed fabric) were generally significant factors on mentioned performance properties of knitted fabrics. The results of experiments also revealed that beside the regenerated cellulosic fibres, new developed collagen peptide added Umorfil® fibre may be used as the raw material of knitted fabrics for sport garments with satisfying comfort results.

This is a preview of subscription content, access via your institution.


  1. 1.

    G. Song, “Improving Comfort in Clothing”, Cambridge: Woodhead Publishing, 2011.

    Google Scholar 

  2. 2.

    T. Röder, J. Moosbauer, K. Wöss, S. Schlader, and G. Kraft, Lenzinger Berichte, 91, 7 (2013).

    Google Scholar 

  3. 3.

    J. C. Sakthivel and N. Anbumani, J. Text. App. Technol. Manag., 7, 1 (2012).

    Google Scholar 

  4. 4.

    E. Dirgar, J. Text. Apparel/Tekstil ve Konfeksiyon, 27, 139 (2017).

    Google Scholar 

  5. 5.

    S. Bhardwaj and S. Juneja, Studies on Home and Community Science, 6, 33 (2012).

    Article  Google Scholar 

  6. 6.

    http://www.kelheim-fibres.com/produkte/vi_te_uk.php (Assessed March 11, 2018).

  7. 7.

    H. Firgo, K. C. Schuster, F. Suchomel, J. Männer, T. Burrow, and M. Abu Rous, Lenzinger Berichte, 85, 22 (2012).

    Google Scholar 

  8. 8.

    https://en.wikipedia.org/wiki/Cuprammonium_rayon (Assessed December 5, 2019).

  9. 9.

    G. Ö. Kayseri, F. Bozdoğan, and H. E. S. Lubos, J. Text. Apparel/Tekstil ve Konfeksiyon, 20, 208 (2010).

    Google Scholar 

  10. 10.

    S. S. Bhattacharya and J. R. Ajmeri, Int. J. Eng. Res. Devel., 10, 16 (2014).

    Google Scholar 

  11. 11.

    A. Basit, W. Latif, M. Ashraf, A. Rehman, K. Iqbal, H. S. Maqsood, and S. A. Baig, Autex Res. J., 19, 80 (2019).

    CAS  Article  Google Scholar 

  12. 12.

    V. Rajanbabu and J. Y. Chen, Peptides, 32, 415 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    L. Najafian and A. S. Babji, Peptides, 33, 178 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    S. Chattopadhyay and R. T. Raines, Biopolymers, 101, 821 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    Beauty Fiber® Intro 20170609, “Umorfil® Beuty Fiber® Intro 20170609” (Assessed December 5, 2018).

  16. 16.

    TS EN ISO 139:2006, Standard Atmospheres for Conditioning and Testing, 2006.

  17. 17.

    E. Karaca, N. Kahraman, S. Omeroglu, and B. Becerir, Fibres Text. East. Eur., 3, 67 (2012).

    Google Scholar 

  18. 18.

    F. Güney and İ. Üçgül, J. Text. Apparel/Tekstil ve Konfeksiyon, 20, 9 (2010).

    Google Scholar 

  19. 19.

    N. Oğlakçıoglu and A. Marmaralı, Fibres Text. East. Eur., 15, 64 (2007).

    Google Scholar 

  20. 20.

    I. G. Frydrych, G. Dziworska, and J. Bilska, Fibres Text. East. Eur., 10, 40 (2002).

    CAS  Google Scholar 

  21. 21.

    ISO-ISO 9237, “Textiles — Determination of the Permeability of Fabrics to Air”, Geneva Switzerland, 1995.

  22. 22.

    ISO 13938-1, “Textiles — Bursting Properties of Fabrics — Part 1: Hydraulic Method for Determination of Bursting Strength and Bursting Distension”, Geneva, Switzerland, 1999.

  23. 23.

    E. Akcagün, M. Bączek, and L. Hes, J. Nat. Fib., 16, 199 (2019).

    Article  Google Scholar 

  24. 24.

    N. Özdil, A. Marmaralı, and S. D. Kretzschmar, Int. J. Thermal Sci., 46, 1318 (2007).

    Article  Google Scholar 

  25. 25.

    J. H. Mecheels and K. H. Umbach in “The Psychometric Ranges of Clothing Systems’, Clothing Comfort: Interactions of Thermal, Ventilation, Construction and Assessment Factors” (A. Arbor Ed.), pp.133–166, MI: Ann Arbor Science Publishers, 1977.

  26. 26.

    N. Oğlakcıoğlu and A. Marmaralı, J. Text. Eng., 17, 6 (2008).

    Google Scholar 

  27. 27.

    E. Öner and A. Okur, The J. Tex. Inst., 106, 1403 (2015).

    Article  Google Scholar 

  28. 28.

    M. Havlova, Fibres Text. East. Eur., 22, 58 (2014).

    Google Scholar 

  29. 29.

    E. Sarıoğlu and O. Babaarslan, J. Eng. Fibers Fabrics, doi:https://doi.org/10.1177/1558925019837810 (2019).

  30. 30.

    E. A. Elnashar, AUTEX Res. J., 5, 207 (2005).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Gizem Karakan Günaydın.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Çeven, E.K., Günaydın, G.K. Evaluation of Some Comfort and Mechanical Properties of Knitted Fabrics Made of Different Regenerated Cellulosic Fibres. Fibers Polym 22, 567–577 (2021). https://doi.org/10.1007/s12221-021-0246-0

Download citation


  • Collagen peptide fibre
  • Thermal comfort
  • Water vapour permeability
  • Bursting strength