Development of Polydiacetylene Embedded Polyurethane Nanocomposites as a Mask for Sensing and Filtering Fine Dust

Abstract

The importance of fine dust has been recognized around the world, and research has been conducted on various regulatory devices and protection devices. In this study, we prepared PU/PDA(polyurethane/polydiacetylene) nanofiber composite materials using 10,12-pentacosadiynoic acid (PCDA) and polyurethane (PU), which have color transition phenomena, to develop mask materials that can detect and block fine dust. PCDA was mixed with polyurethane as the supporting polymer, and the solution was electrospun to produce nanofiber composites on a polypropylene spunbond nonwoven substrate. Then, the nanocomposites were photopolymerized using UV irradiation to produce PU/PDA nanofiber composites with the diameters of the fibers ranging from 129–254 nm at various mass ratios of PU to PCDA. As the mass ratios increased from 4:1 to 6:1, the diameters of the nanofibers also increased. By using the PP spunbond nonwoven material, the PU/PDA fibrous membranes (basis weight: 3 g/m2) had tensile strengths approaching 3.0–3.5 kgf/cm2. The asprepared nanocomposites with comparable air permeability (112 mm/s) had surprisingly high filtration efficiencies (97.8–99.6 %) and low pressure drops (56.9–61.78 Pa) for sodium chloride aerosol particles in the range of 400–600 nm and paraffin aerosol particles with an average particle diameter of 400 nm. The colorimetric response was more sensitive in the nanofibers made with a high mass ratio of PU to PCDA, i.e., up to 80 µg/m3 of fine dust. A clear visual color transition was observed when the concentration of the fine dust was 100 µg/m3. It was confirmed that the visual color transition appeared clearly enough to be distinguished easily by the naked eye, even in the nanofibers with lower contents of PDA.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    The Cost of Air Pollution: Health Impacts of Road Transport. Paris: OECD Publishing, OECD, 2014.

  2. 2.

    J. A. Ailshire and P. Clarke, J. Gerontol B Psychol. Sci. Soc. Sci., 70, 322 (2015).

    PubMed  Article  Google Scholar 

  3. 3.

    L. Yin, Z. Niu, X. Chen, J. Chen, F. Zhang, and L. Xu, China, Environ. Sci. Pollut. Res. Int., 21, 5141 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    C. A. Pope III and D. W. Dockery, J. Air Waste Manage. Assoc., 56, 709 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    D. R. Gold and M. A. Mittleman, Circulation, 127, 1903 (2013).

    PubMed  Article  Google Scholar 

  6. 6.

    J. T. Zelikoff, L. C. Chen, M. D. Cohen, K. Fang, T. Gordon, Y. Li, C. Nadziejko, and R. B. Schlesinger, Inhal. Toxicol., 15, 131 (2003).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Ministry of Environment, Recent Status of Fine Dust and Countermeasures, Sejong: Ministry of Enviornment, Korea, 2013.

    Google Scholar 

  8. 8.

    J. Dia, R. Chen, X. Meng, C. Yang, Z. Zhao, and H. Kan, Environ. Pollut., 203, 116 (2015).

    Article  CAS  Google Scholar 

  9. 9.

    M. Wang, R. Beelen, M. Stafoggia, O. Raaschou-Nielsen, Z. J. Andersen, B. Hoffmann, P. Fischer, D. Houthuijs, M. Nieuwenhuijsen, G. Weinmayr, P. Vineis, W. W. Xun, K. Dimakopoulou, E. Samoli, T. Laatikainen, T. Lanki, A. W. Turunen, B. Oftedal, P. Schwarze, G. Aamodt, J. Penell, U. D. Faire, M. L. Korek, K. Leander, G. Pershagen, N. L. Pedersen, C. Östenson, L. Fratiglioni, K. T. Eriksen, M. Sørensen, A. Tjønneland, B. Bueno-de-Mesquita, M. Eeftens, M. L. Bots, K. Meliefste, U. Krämer, J. Heinrich, Do. Sugiri, T. Key, K. de Hoogh, K. Wolf, A. Peters, J. Cyrys, A. Jaensch, H. Concin, G. Nagel, M. Tsai, H. Phuleria, A. Ineichen, N. Künzli, N. Probst-Hensch, E.l Schaffner, A. Vilier, F. Clavel-Chapelon, C. Declerq, F. Ricceri, C. Sacerdote, A. Marcon, C. Galassi, E. Migliore, A. Ranzi, G. Cesaroni, C. Badaloni, F. Forastiere, M. Katsoulis, A. Trichopoulou, M. Keuken, A. Jedynska, I. M. Kooter, J. Kukkonen, R. S. Sokhi, B. Brunekreef, K. Katsouyanni, and G. Hoek, Environ. Int., 66, 97 (2014).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    M. Kampa and E. Castanas, Environ. Pollut., 151, 362 (2008).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    S. Cavaliere, S. Subianto, I. Savych, D. J. Jones, and J. Rozière, Energy Environ. Sci., 4, 4761 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    T. J. Sill and H. A. von Recum, Biomaterials, 29, 1989 (2008).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Z. Su, J. Ding, and G. Wei, RSC Adv., 4, 52598 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    N. Wang, Y. Si, N. Wang, G. Sun, M. El-Newehy, S. S. Al-Deyab, and B. Ding, Sep. Pur. Technol., 126, 44 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    V. Mottaghitalab and A. K. Haghi, Korean J. Chem. Eng., 28, 114 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    P. Khude, J. Mater. Sci. Eng., 6, 1 (2017).

    Google Scholar 

  17. 17.

    Q. Zhang, J. Welch, H. Park, C. Wu, W. Sigmund, and J. C. M. Marjnissen, J. Aerosol. Sci., 41, 230 (2010).

    Article  CAS  Google Scholar 

  18. 18.

    L. Bao, K. Seki, H. Niinuma, Y. Otani, R. Balgis, T. Ogi, L. Gradon, and K. Okuyama, Sep. Pur. Technol., 159, 100 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    K. Kosmider and J. Scott, Filtra Separat, 39, 20 (2002).

    CAS  Article  Google Scholar 

  20. 20.

    X. Qian and B. Stadler, Chem. Mater., 31, 1196 (2019).

    CAS  Article  Google Scholar 

  21. 21.

    R. W. Carpick, D. Y. Sasaki, and A. R. Burns, Langmuir, 16, 1270 (2000).

    CAS  Article  Google Scholar 

  22. 22.

    S. Ryu, I. Yoo, S. Song, B. Yoon, and J. Kim, J. Am. Chem. Soc., 131, 3800 (2009).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Q. Cheng and R. C. Stevens, Langmuir, 14, 1974 (1998).

    CAS  Article  Google Scholar 

  24. 24.

    U. Jonas, K. Shah, S. Norvez, and D. H. Charych, J. Am. Chem. Soc., 121, 4580 (1999).

    CAS  Article  Google Scholar 

  25. 25.

    M. O. Kim, M. Q. Khan, A. Ullah, N. P. Duy, C. Zhu, J. S. Lee, and I. S. Kim, Mate. Res. Express, 6, 105372 (2019).

    CAS  Article  Google Scholar 

  26. 26.

    M. O. Kim, M. Q. Khan, A. Ullah, D. Phan, C. Zhu, J. Lee, and I. S. Kim, Mater. Res. Express, 7, 085405 (2020).

    CAS  Article  Google Scholar 

  27. 27.

    S. Lee and J. M. Kim, Macromolecules, 40, 9201 (2007).

    CAS  Article  Google Scholar 

  28. 28.

    F. Jannah and J. M. Kim, Dyes Pigm., 169, 15 (2019).

    CAS  Article  Google Scholar 

  29. 29.

    I. S. Park, H. J. Park, W. Jeong, J. Nam, Y. Kang, K. Shin, H. Chung, and J. M. Kim, Macromolecules, 49, 1270 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Y. Chen, Y. Xi, Y. Ke, W. Li, Y. Long, J. Li, L. Wang, and X. Zhang, Sci. China Mater., 61, 969 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim, and S. W. Choi, J. Polym. Sci., Part B: Polym. Phys., 41, 1256 (2003).

    CAS  Article  Google Scholar 

  32. 32.

    J. P. Yapor, A. Alharby, C. Gentry-Weeks, M. M. Reynolds, A. K. M. Mashud Alam, and Y. V. Li, ACS Omega, 2, 7334 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    V. V. Kadam, L. Wang, and R. Padhye, J. Ind. Text., 47, 2253 (2018).

    CAS  Article  Google Scholar 

  34. 34.

    S. Sundarrajan, K. L. Tan, S. H. Lim, and S. Ramakrishna, Procedia Eng., 75, 159 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    R. A. Abuzade, A. Zadhoush, and A. A. Gharehaghaji, J. Appl. Polym. Sci., 126, 232 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    P. W. Gibson, H. L. Schreuder-Gibson, and D. Rivin, AIChE Journal, 45, 190 (1999).

    CAS  Article  Google Scholar 

  37. 37.

    B. Maze, H. Vahedi Tafreshi, Q. Wang, and B. Pourdeyhimi, J. Aerosol. Sci., 38, 550 (2007).

    CAS  Article  Google Scholar 

  38. 38.

    N. Vitchuli, Q. Shi, J. Nowak, M. McCord, M. Bourham, and X. Zhang, J. Appl. Polym. Sci., 116, 2181 (2010).

    CAS  Google Scholar 

  39. 39.

    C. Hung and W. W. Leung, Sep. Pur. Technol., 79, 34 (2011).

    CAS  Article  Google Scholar 

  40. 40.

    R. Yang, H. Wang, Y. Wan, and W. Gao, Ind. Textila, 66, 153 (2015).

    Google Scholar 

  41. 41.

    R. Uppal, G. Bhat, C. Eash, and K. Akato, Fiber. Polym., 14, 660 (2013).

    CAS  Article  Google Scholar 

  42. 42.

    P. Heikkila, A. Taipale, M. Lehtimaki, and A. Harlin, Polym. Eng. Sci., 48, 1168 (2008).

    CAS  Article  Google Scholar 

  43. 43.

    J. Matulevicius, L. Kliucininkas, T. Prasauskas, D. Buivydiene, and D. Martuzevicius, J. Aero. Sci., 92, 27 (2016).

    CAS  Article  Google Scholar 

  44. 44.

    J. Lee, S. Balakrisnan, J. Cho, S. Jeon, and J. Kim, J. Mater. Chem., 21, 2648 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea(NRF) grant funded by Ministry of Science, ICT & Future Planning of the Korea government. (NRF-2017R1A2B4009315).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jung-Soon Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Lee, JS. Development of Polydiacetylene Embedded Polyurethane Nanocomposites as a Mask for Sensing and Filtering Fine Dust. Fibers Polym 22, 489–497 (2021). https://doi.org/10.1007/s12221-021-0187-7

Download citation

Keywords

  • Polydiacetylene
  • Polyurethane
  • Nanocomposite
  • Sensing and filtering
  • Fine dust