Electrically Conductive Nanofibers Composed of Chitosan-grafted Polythiophene and Poly(ε-caprolactone) as Tissue Engineering Scaffold

Abstract

Two novel electrically conductive nanofibrous scaffolds based on chitosan-grafted polythiophene (CS-g-PTh), and chitosan-grafted polythiophene/poly(ε-caprolactone) (CS-g-PTh/PCL) have been fabricated through electrospinning technique, and their performances in tissue engineering (TE) application were preliminary investigated in terms of biological (biocompatibility, biodegradability, and enhancing the cells adhesion and proliferation) as well as physicochemical (composition, electroactivity, conductivity, hydrophilicity, and morphology) features. The conductivities of the CS-g-PTh and CS-g-PTh/PCL nanofibrous scaffolds were determined as 0.09 and 8×10−3 Scm−1, respectively. The developed CS-g-PTh/PCL scaffold exhibited slightly higher cells proliferation (8.24±0.49) than those of the CS-g-PTh scaffold (7.1±0.38) in time period of 7 days. The biodegradability tests using gravimetric approach revealed that the mass loss of CS-g-PTh and CS-g-PTh/PCL electrospun nanofibers were about 28.1 and 37.3 wt.%, respectively, at the end of experiments (sixth weeks). It was found that the electrospinning of CS-g-PTh with PCL improves the nanofibers uniformity as well as the biological features (e.g., biocompatibility and cell proliferation) of the resultant scaffold.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    F. M. Chen and X. Liu, Prog. Polym. Sci., 53, 86 (2016).

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    B. Maher, Nature, 499, 20 (2013).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    S. Maji, T. Agarwal, J. Das, and T. K. Maiti, Carbohyd. Polym., 189, 115 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    P. Hassanzadeh, F. Atyabi, and R. Dinarvand, J. Control. Releas., 279, 181 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    J. Shin, E. J. Choi, J. H. Cho, A. N. Cho, Y. Jin, K. Yang, C. Song, and S. W. Cho, Biomacromolecules, 18, 3060 (2017).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    B. Kaczmarek, A. Sionkowska, J. Kozlowska, and A. M. Osyczka, Int. J. Biol. Macromol., 107, 247 (2018).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    B. Kaczmarek, A. Sionkowska, and A. M. Osyczka, Int. J. Biol. Macromol., 107, 470 (2018).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    H. Samadian, H. Mobasheri, S. Hasanpour, and R. Faridi-Majid, J. Nano. Res., 50, 78 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    B. Massoumi, S. Davtalab, M. Jaymand, and A. A. Entezami, RSC Adv., 5, 36715 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    I. Titorencu, M. G. Albu, M. Nemecza, and V. V. Jingaa, Cur. Stem. Cell. Res. Ther., 12, 165 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    D. Ozdil and H. M. Aydin, J. Chem. Technol. Biotechnol., 89, 1793 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    E. S. Place, J. H. George, C. K. Williams, and M. M. Stevens, Chem. Soc. Rev., 38, 1139 (2009).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    S. G. Karaj-Abad, M. Abbasian, and M. Jaymand, Carbohyd. Polym., 152, 297 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    J. M. Dang and K. W. Leong, Adv. Drug. Deliv. Rev., 58, 487 (2006).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    A. Anitha, S. Sowmya, P. T. Sudheesh Kumar, S. Deepthi, K. P. Chennazhi, H. Ehrlich, M. Tsurkan, and R. Jayakumar, Prog. Polym. Sci., 39, 1644 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    M. Swierczewska, H. S. Han, K. Kim, J. H. Park, and S. Lee, Adv. Drug. Deliv. Rev., 99, 70 (2016).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    N. Reddy, R. Reddy, and Q. Jiang, Tr. Biotechnol., 33, 362 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    B. H. L. Oh, A. Bismarck, and M. B. Chan-Park, Biomacromolecules, 15, 1777 (2014).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    O. Garcia-Valdez, P. Champagne, and M. F. Cunningham, Prog. Polym. Sci., 76, 151 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    D. Chow, M. L. Nunalee, D. W. Lim, A. J. Simnick, and A. Chilkoti, Mater. Sci. Eng R., 62, 125 (2008).

    Article  CAS  Google Scholar 

  21. 21.

    A. A. Ghavimi, M. H. Ebrahimzadeh, M. Solati-Hashjin, and N. A. Abu-Osman, J. Biomed. Mater. Res A., 103, 2482 (2015).

    Article  CAS  Google Scholar 

  22. 22.

    D. Ziaud, H. Xiong, and P. Fei, Critical. Rev. Food. Sci. Nutr., 57, 2691 (2017).

    Article  CAS  Google Scholar 

  23. 23.

    A. M. Elbarbary, H. A. A. El-Rehim, N. M. El-Sawy, E. S. A. Hegazy, and E. S. A. Soliman, Carbohyd. Polym., 176, 19 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    C. J. Bettinger, J. P. Bruggeman, A. Misra, J. T. Borenstein, and R. Langer, Biomaterials, 30, 3050 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    E. S. Place, N. D. Evans, and M. M. Stevens, Nat. Mater., 8, 457 (2009).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    N. K. Guimard, N. Gomez, and C. E. Schmidt, Prog. Polym. Sci., 32, 876 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    T. H. Qazi, R. Rai, and A. R. Boccaccini, Biomaterials, 35, 9068 (2014).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    C. Meier, I. Lifincev, and M. E. Welland, Biomacromolecules, 16, 558 (2015).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    M. R. Aufan, Y. Sumi, S. Kim, and J. Y. Lee, ACS Appl. Mater. Interfaces., 7, 23454 (2015).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    M. S. Recco, A. C. Floriano, D. B. Tada, A. P. Lemes, R. Lang, and F. H. Cristovan, RSC Adv., 6, 25330 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    M. Jaymand, M. Hatamzadeh, and Y. Omidi, Prog. Polym. Sci., 47, 26 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    S. Vandghanooni and M. Eskandani, Int. J. Biol. Macromol., 141, 636 (2019).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    L. Ghasemi-Mobarakeh, M. P. Prabhakaran, and M. H. Morshed, J. Tissue. Eng. Reg. Med., 5, e17 (2011).

    CAS  Article  Google Scholar 

  34. 34.

    Y. Wu, L. Wang, B. Guo, Y. Shao, and P. X. Ma, Biomaterials, 87, 18 (2016).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    B. Bagheri, P. Zarrintaj, A. Samadi, R. Zarrintaj, M. R. Ganjali, M. R. Saeb, M. Mozafari, O. O. Park, and Y. C. Kim, Int. J. Biol. Macromol., 147, 160 (2020).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    M. Hatamzadeh, P. Najafi-Moghadam, A. Baradar-Khoshfetrat, M. Jaymand, and B. Massoumi, Polymer, 107, 177 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    M. Hatamzadeh, P. Najafi-Moghadam, Y. Beygi-Khosrowshahi, B. Massoumi, and M. Jaymand, RSC Adv., 6, 105371 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    M. Jaymand, R. Sarvari, B. Massoumi, M. Eskandani, and Y. Beygi-Khosrowshahi, J. Biomed. Mater. Res A., 104, 2673 (2016).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    R. Sarvari, B. Massoumi, M. Jaymand, Y. Beygi-Khosrowshahi, and M. Abdollahi, RSC Adv., 6, 19437 (2016).

    CAS  Article  Google Scholar 

  40. 40.

    M. Eskandani, J. Abdolalizadeh, H. Hamishehkar, H. Nazemiyeh, and J. Barar, Fitoterapia, 101, 1 (2015).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    S. M. Oliveira, N. M. Alvesa, and J. F. Mano, J. Adhes. Sci. Technol., 28, 843 (2014).

    CAS  Article  Google Scholar 

  42. 42.

    A. Sadeghi, F. Moztarzadeh, and J. A. Mohandesi, Int. J. Biol. Macromol., 121, 625 (2019).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    M. Li, J. Chen, M. Shi, H. Zhang, P. X. Ma, and B. Guo, Chem. Eng. J., 375, 121999 (2019).

    CAS  Article  Google Scholar 

  44. 44.

    M. Jaymand, Des. Monomer. Polym., 14, 433 (2011).

    CAS  Article  Google Scholar 

  45. 45.

    B. Massoumi, N. Sorkhi-Shams, M. Jaymand, and R. Mohammadi, RSC Adv., 5, 21197 (2015).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Kermanshah University of Medical Sciences, Kermanshah, Iran (grant number: 980365), and Payame Noor University for technical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mehdi Jaymand.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Massoumi, B., Abbasian, M., Khalilzadeh, B. et al. Electrically Conductive Nanofibers Composed of Chitosan-grafted Polythiophene and Poly(ε-caprolactone) as Tissue Engineering Scaffold. Fibers Polym 22, 49–58 (2021). https://doi.org/10.1007/s12221-021-0178-8

Download citation

Keywords

  • Chitosan
  • Polythiophene
  • Poly(ε-caprolactone)
  • Nanofibers
  • Tissue engineering