A Facile Method to Fabricate Bioenvironmentally Friendly Janus Nonwoven Medical Covers: Preparation and Property Evaluation

Abstract

Medical product contamination is a serious threat to patients’ health. However, designing medical covers that ensure Janus performance and outstanding abrasion resistance, mechanical performances has remained a great challenge. In this study, a novel Janus nonwoven fabric nonwoven fabric consists of a hydrophilic inner layer of polylactic acid (PLA)/lowmelting polylactic acid (LPLA) and a coated outer layer of hydrophobic thermoplastic polyurethane (TPU) is successfully fabricated. The subsequent PLA/LPLA-TPU textiles exhibits excellent protective performance of inner absorption. Moreover, the coating improves tensile strength and increases abrasion resistance. A mechanism of mechanical failure is further studied. This kind of nonwoven fabric is suggested to be a promising candidate for medical covers and health supplies.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    C. Ogunleye and R. Anandjiwala, J. Ind. Text., 46, 335 (2015).

    Article  Google Scholar 

  2. 2.

    P. Goswami and T. O’Haire, Woodhead Publishing, 18, 97 (2016).

    Google Scholar 

  3. 3.

    T.-T. Li, Y. Wang, H.-K. Peng, X. Zhang, B.-C. Shiu, J.-H. Lin, and C.-W. Lou, Compos. Part A-Appl. Sci. Manuf., 128, 105685 (2020).

    CAS  Article  Google Scholar 

  4. 4.

    C. Zhang, L. Wang, M. Yu, L. Qu, Y. Men, and X. Zhang, Appl. Surf. Sci., 434, 198 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Y. Lu, M. Tian, X. Sun, N. Pan, F. Chen, S. Zhu, X. Zhang, and S. Chen, Compos. Part A-Appl. Sci. Manuf., 117, 202 (2019).

    CAS  Article  Google Scholar 

  6. 6.

    T. T. Li, L. Ling, M. C. Lin, Q. Jiang, Q. Lin, J. H. Lin, and C. W. Lou, Nanomaterials (Basel), 9, 679 (2019).

    CAS  Article  Google Scholar 

  7. 7.

    T. T. Li, M. Yan, W. Xu, B. C. Shiu, C. W. Lou, and J. H. Lin, Polymers (Basel), 10, 1167 (2018).

    Article  Google Scholar 

  8. 8.

    X. Tang and X. Yan, J. Sol-Gel Sci. Technol., 81, 378 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    J. Gu, P. Xiao, P. Chen, L. Zhang, H. Wang, L. Dai, L. Song, Y. Huang, J. Zhang, and T. Chen, ACS Appl. Mater. Interfaces, 9, 5968 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    K. Raghvendra and L. Sravanthi, Modern Chem. Appl., 5, 206 (2017).

    Google Scholar 

  11. 11.

    J.-K. Yun, H.-J. Yoo, and H.-D. Kim, J. Appl. Polym. Sci., 105, 1168 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    J. Feng, Z. Ge, C. Chai, S. Wang, D. Yu, G. Wu, and Y. Luo, Prog. Org. Coat., 97, 91 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    A. Moiz, R. Padhye, and X. Wang, Polymers (Basel), 9, 660 (2017).

    Article  Google Scholar 

  14. 14.

    B. John and M. Furukawa, J. Polym. Res., 19, 9764 (2012).

    Article  Google Scholar 

  15. 15.

    D. Miao, Z. Huang, X. Wang, J. Yu, and B. Ding, Small, 14, e1801527 (2018).

    Article  Google Scholar 

  16. 16.

    S. Naderizadeh, A. Athanassiou, and I. S. Bayer, J. Colloid Interface Sci., 519, 285 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    M.-C. Lin, C.-W. Lou, J.-Y. Lin, T. A. Lin, Y.-C. Chuang, and J.-H. Lin, Fiber. Polym., 18, 2219 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    T. T. Li, X. Cen, H. T. Ren, L. Wu, H. K. Peng, W. Wang, B. Gao, C. W. Lou, and J. H. Lin, ACS Appl. Mater. Interfaces, 12, 8730 (2020).

    CAS  Article  Google Scholar 

  19. 19.

    T.-T. Li, M. Yan, Y. Zhong, H.-T. Ren, C.-W. Lou, S.-Y. Huang, and J.-H. Lin, J. Mater. Res. Technol., 8, 5124 (2019).

    CAS  Article  Google Scholar 

  20. 20.

    T. A. Lin, C.-W. Lou, and J.-H. Lin, Appl. Sciences-Basel, 7, 1254 (2017).

    Article  Google Scholar 

  21. 21.

    M.-C. Lin, J.-H. Lin, J.-Y. Lin, T. A. Lin, and C.-W. Lou, J. Sandw. Struct. Mater., 22, 689 (2018).

    Article  Google Scholar 

  22. 22.

    J. Sheng, Y. Xu, J. Yu, and B. Ding, ACS Appl. Mater. Interfaces, 9, 15139 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    M. Zhang, J. Sheng, X. Yin, J. Yu, and B. Ding, Macromol. Mater. Eng., 302, 16272 (2017).

    Google Scholar 

  24. 24.

    A. Moiz, A. Vijayan, R. Padhye, and X. Wang, Cellulose, 23, 3377 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Y. Shi, Y. Li, J. Wu, W. Wang, A. Dong, and J. Zhang, J. Biomater. Sci. Polym. Ed., 25, 713 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    S. F. Burlatsky, V. V. Atrazhev, M. Gummalla, D. A. Condit, and F. Liu, J. Power Sources, 190, 485 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    J. Gu, H. Gu, J. Cao, S. Chen, N. Li, and J. Xiong, Appl. Surf. Sci., 439, 589 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    J. Wang, Y. Li, H. Tian, J. Sheng, J. Yu, and B. Ding, RSC Adv., 4, 61068 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Z. Wang, C. Zhao, and Z. Pan, J. Colloid Interface Sci., 441, 121 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    K. Ah Hong, H. Sook Yoo, and E. Kim, Text. Res. J., 85, 160 (2015).

    Article  Google Scholar 

  31. 31.

    M.-C. Lin, J.-H. Lin, J.-Y. Lin, T. A. Lin, and C.-W. Lou, J. Sandw. Struct. Mater., 22, 2287 (2018).

    Article  Google Scholar 

  32. 32.

    R. Yan, R. Wang, C.-W. Lou, and J.-H. Lin, Compos. Part B: Eng., 69, 58 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    J.-H. Lin, Z.-I. Lin, Y.-J. Pan, C.-L. Huang, C.-K. Chen, and C.-W. Lou, Compos. Part B: Eng., 89, 424 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    W. S. Wong, Z. H. Stachurski, D. R. Nisbet, and A. Tricoli, ACS Appl. Mater. Interfaces, 8, 13615 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    C. Cai, N. Sang, S. Teng, Z. Shen, J. Guo, X. Zhao, and Z. Guo, Surf. Coat. Techol., 307, 366 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    X. Tang, X. Zhang, H. Zhang, X. Zhuang, and X. Yan, Text. Res. J., 88, 2568 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Tianjin (18JCQNJC03400), the Natural Science Foundation of Fujian (2018J01504, 2018J01505) and the National Natural Science Foundation of China (grant number 11702187). This study is also supported by the Opening Project of Green Dyeing and Finishing Engineering Research Center of Fujian University (2017001A, 2017001B, and 2017002B) and the Program for Innovative Research Team in University of Tianjin (TD13-5043).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ting-Ting Li or Ching-Wen Lou or Jia-Horng Lin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, TT., Shiu, BC. et al. A Facile Method to Fabricate Bioenvironmentally Friendly Janus Nonwoven Medical Covers: Preparation and Property Evaluation. Fibers Polym 22, 123–130 (2021). https://doi.org/10.1007/s12221-021-0158-z

Download citation

Keywords

  • Coating
  • Polylactic acid
  • Thermoplastic polyurethane
  • Janus
  • Abrasion resistance
  • Mechanical property