A New Interfacial Model for Transverse Mechanical Properties of Unidirectional Fiber Reinforced Composites

Abstract

Transverse mechanical properties play an important role in the study of fiber reinforced composite materials. An experimental and numerical study on mechanical properties and damage behavior of unidirectional fiber reinforced composites under transverse load is presented. The quasi-static tensile and compressive tests were carried out to obtain mechanical properties of unidirectional fiber reinforced composites under transverse tension and compression. The fracture morphologies of the specimens were observed by scanning electron microscopy (SEM) to reveal their distinct damage mechanism. Considering the effects of interface, a new interfacial model is proposed. Two representative volume elements (RVEs) of basic and interfacial models are established for comparison analysis. The predicted results agree well with the experimental data. The introduction of interfacial layer has little effect on the prediction of transverse modulus, but can improve the accuracy of the predicted transverse strength. The fiber volume fraction has a great influence on the transverse mechanical properties of unidirectional fiber reinforced composites. As the fiber volume fraction increases, its transverse modulus increases, but both the transverse strength and the ultimate strain decrease.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    E. E. Gdoutos, K. Pilakoutas, and C. A. Rodopoulos, “Failure Analysis of Industrial Composite Materials”, McGraw-Hill Professional, 2000.

  2. 2.

    C. Baley, Y. Perrot, F. Busnel, H. Guezenoc, and P. Davies, Mater. Lett., 60, 2984 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    R. Cai and T. Jin, J. Reinf. Plast. Compos., 37, 1360 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    M. M. Shokrieh and M. J. Omidi, Compos. Struct., 93, 690 (2011).

    Article  Google Scholar 

  5. 5.

    M. M. Shokrieh and M. J. Omidi, Compos. Struct., 88, 595 (2009).

    Article  Google Scholar 

  6. 6.

    M. M. Shokrieh and M. J. Omidi, Compos. Struct., 91, 95 (2009).

    Article  Google Scholar 

  7. 7.

    M. Z. Rong, M. Q. Zhang, Y. Liu, G. C. Yang, and H. M. Zeng, Compos. Sci. Technol., 61, 1437 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    J. R. Brockenbrough, S. Suresh, and H. A. Wienecke, Acta Metall. Mater., 39, 735 (1991).

    CAS  Article  Google Scholar 

  9. 9.

    S. A. Elnekhaily and R. Talreja, Compos. Sci. Technol., 155, 22 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    L. Qi, X. Chao, W. Tian, W. Ma, and H. Li, Compos. Sci. Technol., 159, 142 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    F. Naya, C. González, C. S. Lopes, S. Van der Veen, and F. Pons, Compos. Part A Appl. S., 92, 146 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    L. Zhuang, A. Pupurs, J. Varna, R. Talreja, and Z. Ayadi, Compos. Part A Appl. S., 109, 463 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    L. Zhuang, R. Talreja, and J. Varna, Compos. Part A Appl. S., 107, 294 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    F. M. Zhao and N. Takeda, Compos. Part A Appl. S., 31, 1203 (2000).

    Article  Google Scholar 

  15. 15.

    L. Riaño, L. Belec, J. F. Chailan, and Y. Joliff, Compos. Struct., 198, 109 (2018).

    Article  Google Scholar 

  16. 16.

    M. S. Madhukar and L. T. Drzal, J. Compos. Mater., 25, 958 (1991).

    CAS  Article  Google Scholar 

  17. 17.

    W. Na, G. Lee, M. Sung, H. N. Han, and W. R. Yu, Compos. Struct., 168, 92 (2017).

    Article  Google Scholar 

  18. 18.

    M. Naderi, N. Apetre, and N. Iyyer, J. Compos. Mater., 51, 2963 (2017).

    Article  Google Scholar 

  19. 19.

    A. Fereidoon, R. Rafiee, and R. M. Moghadam, Mech. Compos. Mater., 49, 325 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    R. Rafiee and A. Ghorbanhosseini, Mech. Mater., 106, 1 (2017).

    Article  Google Scholar 

  21. 21.

    R. Rafiee and A. Eskandariyun, Compos. Part B Eng., 173, 106842 (2019).

    Article  Google Scholar 

  22. 22.

    R. Rafiee and A. Ghorbanhosseini, Polym. Compos., 39, 3903 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    K. Takahashi and T. W. Chou, Metall. Mater. Trans. A, 19, 129 (1988).

    Article  Google Scholar 

  24. 24.

    C. T. Sun and R. S. Vaidya, Compos. Sci. Technol., 56, 171 (1996).

    CAS  Article  Google Scholar 

  25. 25.

    W. Sun, Z. Guan, Z. Li, M. Zhang, and Y. Huang, Chinese J. Aeronaut., 30, 1907 (2017).

    Article  Google Scholar 

  26. 26.

    L. Yang, Z. Wu, Y. Cao, and Y. Yan, J. Reinf. Plast. Compos., 34, 72 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    L. Yang, Y. Yan, Y. Liu, and Z. Ran, Compos. Sci. Technol., 72, 1818 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    C. González and J. LLorca, Compos. Sci. Technol., 67, 2795 (2007).

    Article  Google Scholar 

  29. 29.

    E. Correa, V. Mantič, and F. París, Eng. Fract. Mech., 75, 4085 (2008).

    Article  Google Scholar 

  30. 30.

    E. Correa, V. Mantič, and F. París, Compos. Sci. Technol., 68, 2010 (2008).

    CAS  Article  Google Scholar 

  31. 31.

    E. Correa, F. París, and V. Mantič, Eng. Fract. Mech., 103, 174 (2013).

    Article  Google Scholar 

  32. 32.

    F. París, E. Correa, and J. Cañas, Compos. Sci. Technol., 63, 1041 (2003).

    Article  Google Scholar 

  33. 33.

    Q. Sun, G. Zhou, Z. Meng, H. Guo, Z. Chen, H. Liu, H. Kang, S. Keten, and X. Su, Compos. Sci. Technol., 172, 81 (2019).

    CAS  Article  Google Scholar 

  34. 34.

    ASTM D3039, “Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials”, ASTM International, West Conshohocken, PA, www.astm.org, 2007.

    Google Scholar 

  35. 35.

    ASTM D6641, “Standard Test Method for Determining the Compressive Properties of Polymer Matrix Composite Laminates Using a Combined Loading Compression (CLC) Test Fixture”, ASTM International, West Conshohocken, PA, www.astm.org, 2016.

    Google Scholar 

  36. 36.

    G. Qi, D. Qi, Q. Bai, H. Li, B. Wei, N. Ding, D. Zhang, and X. Shao, Fiber. Polym., 20, 595 (2019).

    CAS  Article  Google Scholar 

  37. 37.

    A. Behera, M. M. Thawre, and A. Ballal, Fiber. Polym., 20, 2390 (2019).

    CAS  Article  Google Scholar 

  38. 38.

    Z. Xia, Y. Zhang, and F. Ellyin, Int. J. Solids Struct., 40, 1907 (2003).

    Article  Google Scholar 

  39. 39.

    X. Wang, Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, 2006.

  40. 40.

    G. Fang, J. Liang, B. Wang, and Y. Wang, Appl. Compos. Mater., 18, 449 (2011).

    Article  Google Scholar 

  41. 41.

    C. C. Chamis, J. Compos. Tech. Res., 11, 3 (1989).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. NS2019001), the Natural Science Foundation of Jiangsu Province (Grant No. BK20190394), the Shanghai Aerospace Science and Technology Innovation Fund (Grant No. SAST2018-071), the China Scholarship Council (Grant No. 201706830061) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Deng’an Cai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, D., Wang, X., Shi, Y. et al. A New Interfacial Model for Transverse Mechanical Properties of Unidirectional Fiber Reinforced Composites. Fibers Polym 22, 430–441 (2021). https://doi.org/10.1007/s12221-021-0110-2

Download citation

Keywords

  • RVE
  • Interface
  • Transverse properties
  • Damage mechanism
  • Fiber volume fraction