High Velocity Impact Response and Damage Mechanism of an Aluminium/Glass-Carbon Fiber/Epoxy Composite Plate Reinforced with Graphene Nano-plates

Abstract

The interface of fiber-polymer matrix has a critical role in controlling the mechanical features of polymer composites. Most of the studies focused on the application of reduced graphene oxide in enhancing the interfacial properties of the composite. In this study, we focused on utilising the Graphene nano-plates (GNPs) with average diameter of 5–10 µm. The GNPs were assessed by different techniques of XRD and AFM. The GNPs incorporated into the epoxy matrix, and then the high velocity impact response was evaluated. The result of GNPs incorporation into the epoxy matrix showed that the 0.3 wt.% GNPs incorporation into the glass fiber epoxy matrix and 0.9 wt.% GNPs incorporation into the glass-carbon fiber/epoxy were destructive on the absorption energy of the composite. The optimum concentration of the incorporated GNPs highly dependent upon the type of fiber in the matrix and the level of initial velocity in the impact test. Although the high concentration of GNPs (up to 0.9 wt.%) dispersed at the interface of the glass fiber/epoxy resin can induce the high velocity impact performance, but it resulted in the reduction of the impact performance of glass-carbon fiber/epoxy due to the agglomeration of the GNPs.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    E. Sevkat, “Hybrid Carbon-glass Fiber/toughened Epoxy Thick Composites Subject to Drop-weight and Ballistic Impacts”, City University of New York, 2009.

  2. 2.

    H. Ebrahimnezhad-Khaljiri, R. Eslami-Farsani, and E. Akbarzadeh, Proc. Inst. Mech. Eng., Part C, 0954406219897935 (2019).

  3. 3.

    J. Sun, A. Daliri, G. Lu, D. Ruan, and Y. Lv, Mater. Des., 183, 108139 (2019).

    CAS  Article  Google Scholar 

  4. 4.

    Q. Liu, J. Ma, L. Kang, G. Sun, and Q. Li, Mater. Des., 88, 643 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    A. Ramadhan, A. A. Talib, A. M. Rafie, and R. Zahari, Mater. Des., 43, 307 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    C. C. Holland, E. A. Gamble, F. W. Zok, V. S. Deshpande, and R. M. McMeeking, Mech. Mater., 91, 241 (2015).

    Article  Google Scholar 

  7. 7.

    S. Tian and Z. Zhou, Mater. Des., 102, 142 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    L. B. Vogelesang and A. Vlot, J. Mater. Process. Technol., 103, 1 (2000).

    Article  Google Scholar 

  9. 9.

    T. Sinmazçelik, E. Avcu, M. Ö. Bora, and O. Çoban, Mater. Des., 32, 3671 (2011).

    Article  Google Scholar 

  10. 10.

    P. R. S. Reddy, T. S. Reddy, V. Madhu, A. Gogia, and K. V. Rao, Mater. Des., 84, 79 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    A. Vlot, Compos. Eng., 3, 911 (1993).

    Article  Google Scholar 

  12. 12.

    M. Abdullah and W. Cantwell, Polym. Compos., 27, 700 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    M. Ghalami-Choobar and M. Sadighi, Aerosp. Sci. Technol., 32, 142 (2014).

    Article  Google Scholar 

  14. 14.

    A. W. Tehami, K. Asim, and S. Sarwar, “Testing of Impact Toughness of Fiber Reinforced Composite Laminates”, SAE Technical Paper, 2017.

  15. 15.

    B. Dong, Z. Yang, Y. Huang, and H.-L. Li, Tribol. Lett., 20, 251 (2005).

    CAS  Article  Google Scholar 

  16. 16.

    D. K. Rathore, R. K. Prusty, D. S. Kumar, and B. C. Ray, Compos. Part A Appl. Sci. Manuf., 84, 364 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    R. E. Gorga and R. E. Cohen, J. Polym. Sci. B Polym. Phys., 42, 2690 (2004).

    CAS  Article  Google Scholar 

  18. 18.

    H. Rahmani, R. Eslami-Farsani, and H. Ebrahimnezhad-Khaljiri, Fiber. Polym., 21, 170 (2020).

    CAS  Article  Google Scholar 

  19. 19.

    X. Zhang, P. Wang, H. Neo, G. Lim, A. A. Malcolm, E.-H. Yang, and J. Yang, Mater. Des., 92, 621 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    A. Mikhalchan, M. Ridha, and T. Tay, Mater. Des., 143, 112 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    K. Zhu, C. Jiang, Z. Li, L. Du, Y. Zhao, Z. Chai, L. Wang, and M. Chen, Mater. Des., 107, 333 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    M. Moniruzzaman and K. I. Winey, Macromolecules, 39, 5194 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    J. Gibson, J. McKee, G. Freihofer, S. Raghavan, and J. Gou, Int. J. Smart Nano Mater., 4, 212 (2013).

    Article  Google Scholar 

  24. 24.

    E. Soliman, “New Generation Fiber Reinforced Polymer Composites Incorporating Carbon Nanotubes”, The University of New Mexico, 2011.

  25. 25.

    X.-J. Shen, C.-Y. Dang, B.-L. Tang, X.-H. Yang, H.-J. Nie, J.-J. Lu, T.-T. Zhang, and K. Friedrich, Mater. Des., 185, 108257 (2020).

    CAS  Article  Google Scholar 

  26. 26.

    P. Wang, J. Yang, W. Liu, X.-Z. Tang, K. Zhao, X. Lu, and S. Xu, Mater. Des., 113, 68 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    X.-J. Shen, Y. Liu, H.-M. Xiao, Q.-P. Feng, Z.-Z. Yu, and S.-Y. Fu, Compos. Sci. Technol., 72, 1581 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    M. Liu, Y. Duan, Y. Wang, and Y. Zhao, Mater. Des., 53, 466 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    J. Li, P.-S. Wong, and J.-K. Kim, Mater. Sci. Eng. A, 483, 660 (2008).

    Article  Google Scholar 

  30. 30.

    N. Saravanan, R. Rajasekar, S. Mahalakshmi, T. Sathishkumar, K. Sasikumar, and S. Sahoo, J. Reinf. Plast. Compos., 33, 1158 (2014).

    Article  Google Scholar 

  31. 31.

    A. K. Pathak, M. Borah, A. Gupta, T. Yokozeki, and S. R. Dhakate, Compos. Sci. Technol., 135, 28 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    E. Kazemi-Khasragh, F. Bahari-Sambran, M. H. Siadati, and R. Eslami-Farsani, Fiber. Polym., 19, 2388 (2018).

    CAS  Article  Google Scholar 

  33. 33.

    Z. Asaee, M. Mohamed, D. De Cicco, and F. Taheri, Int. J. Compos. Mater., 7, 20 (2017).

    CAS  Google Scholar 

  34. 34.

    F. Wang, L. T. Drzal, Y. Qin, and Z. Huang, Compos. Part A Appl. Sci. Manuf., 87, 10 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    R. J. Muhi, F. Najim, and M. F. de Moura, Compos. B. Eng., 40, 798 (2009).

    Article  Google Scholar 

  36. 36.

    M. Sadighi, R. Alderliesten, and R. Benedictus, Int. J. Impact Eng., 49, 77 (2012).

    Article  Google Scholar 

  37. 37.

    S. Abrate, “Impact Engineering of Composite Structures”, Springer Science & Business Media, 2011.

  38. 38.

    H. Ahmadi, G. Liaghat, H. Sabouri, and E. Bidkhouri, J. Compos. Mater., 47, 1605 (2013).

    Article  Google Scholar 

  39. 39.

    L. Deka, “Quasi-static and Multi-site High Velocity Impact Response of Composite Structures”, The University of Alabama at Birmingham, 2008.

  40. 40.

    D. Zhou and W. Stronge, Int. J. Impact Eng., 35, 1339 (2008).

    Article  Google Scholar 

  41. 41.

    N. Domun, C. Kaboglu, K. R. Paton, J. P. Dear, J. Liu, B. R. Blackman, G. Liaghat, and H. Hadavinia, Compos. B. Eng., 167, 497 (2019).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mehdi Yarmohammad Tooski.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shahjouei, S., Barati, M.R. & Tooski, M.Y. High Velocity Impact Response and Damage Mechanism of an Aluminium/Glass-Carbon Fiber/Epoxy Composite Plate Reinforced with Graphene Nano-plates. Fibers Polym 22, 480–488 (2021). https://doi.org/10.1007/s12221-021-0105-z

Download citation

Keywords

  • Glass-Carbon fiber
  • High velocity impact
  • Ballistic
  • Graphene Nano-plate
  • Al2024