Electrospun Skin Tissue Engineering Scaffolds Based on Polycaprolactone/Hyaluronic Acid/L-ascorbic Acid

Abstract

Skin tissue engineering is an evolving method to reconstruct skin damages caused by disease, burn or trauma. In skin tissue engineering, scaffolds should prepare three-dimensional structure for skin cells. Electrospinning technique has been widely applied for producing nano/micro-scale fiber scaffolds in tissue engineering. In this study, electrospun scaffolds based on polycaprolactone (PCL) and hyaluronic acid (HA) containing L-ascorbic acid (AA) were fabricated. Morphology, contact angle, functional groups, biodegradability and drug release of the scaffolds were evaluated. L929 fibroblast cells seeded on nanofibrous scaffolds and cell attachment and viability were evaluated as well. According to the results, the fibers diameter were less than 180 nm and by adding hyaluronic acid, the hydrophilicity of scaffolds increased and degradation rate was adjusted. The encapsulation efficiency and successful release of ascorbic acid in nanofibrous scaffolds were demonstrated. According to the results, the cell growth, proliferation and adhesion of L929 fibroblast cells on the PCL/HA/AA scaffolds were enhanced in comparison with the PCL scaffold. Moreover, PCL/HA (80:20) containing 40 mg of AA nanofibrous scaffold could be potentially applied for skin tissue engineering.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. H. Kailani, H. Jafar, and A. Awidi, Skin Tissue Eng. Regen. Med., 163 (2016).

  2. 2.

    N. Bhardwaj, D. Chouhan, and B. B. Mandal, “Functional 3D Tissue Engineering Scaffolds”, pp.345–365, Woodhead Publishing, 2018.

  3. 3.

    M. Janmohammadi and M. S. Nourbakhsh, Int. J. Polym. Mater. Polym. Biomater., 68, 527 (2018).

    Article  CAS  Google Scholar 

  4. 4.

    K. Ghosal, A. Chandra, G. Praveen, S. Snigdha, S. Roy, C. Agatemor, S. Thomas, and I. Provaznik, Sci. Rep., 8, 1 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    M. M. Hasan, A. M. Alam, and K. A. Nayem, Eur. Sci. J., 10, 265 (2014).

    Google Scholar 

  6. 6.

    N. Bhardwaj and S. C. Kundu, Biotechnol. Adv., 28, 325 (2010).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    C. Tangsadthakun, S. Kanokpanont, N. Sanchavanakit, T. Banaprasert, and S. Damrongsakkul, J. Metals, Mater. Min., 16, 37 (2017).

    Google Scholar 

  8. 8.

    S. P. Zhong, Y. Z. Zhang, and C. T. Lim, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 2, 510 (2010).

    CAS  Google Scholar 

  9. 9.

    A. Chaudhari, K. Vig, D. Baganizi, R. Sahu, S. Dixit, V. Dennis, S. Singh, and S. Pillai, Int. J. Mol. Sci., 17, 1974 (2016).

    PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    N. I. A. Mahboob Morshed, S. R. Chowdhury, and B. H. I. Ruszymah, Regen. Res., 3, 17 (2014).

    Google Scholar 

  11. 11.

    K. Ghosal, M. S. Latha, and S. Thomas, Eur. Polym. J., 60, 58 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    A. Arabi, E. Boggs, and M. Patel, Surf. Innov., 2, 47 (2014).

    Article  CAS  Google Scholar 

  13. 13.

    E. Luong-Van, L. Grøndahl, K. N. Chua, K. W. Leong, V. Nurcombe, and S. M. Cool, Biomaterials, 27, 2042 (2006).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    M. Chen, M. Chopra, and S. Bhowmick, MRS Online Proceedings Library Archive, 1235 (2009).

  15. 15.

    A. K. Ekaputra, G. D. Prestwich, S. M. Cool, and D. W. Hutmacher, Biomaterials, 32, 8108 (2011).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    E. Vatankhah, D. Semnani, M. P. Prabhakaran, M. Tadayon, S. Razavi, and S. Ramakrishna, Acta Biomater., 10, 709 (2014).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    E. K. Brenner, J. D. Schiffman, E. A. Thompson, L. J. Toth, and C. L. Schauer, Carbohydr. Polym., 87, 926 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    M. N. Collins and C. Birkinshaw, Carbohydr. Polym., 92, 1262 (2013).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    K. Y. Lee, L. Jeong, Y. O. Kang, S. J. Lee, and W. H. Park, Adv.Drug Deliv. Rev., 61, 1020 (2009).

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    M. Arnal-Pastor, C. M. Ramos, M. P. Garnés, M. M. Pradas, and A. V. Lluch, Mater. Sci. Eng.: C, 33, 4086 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    A. L. McNulty, T. P. Vail, and V. B. Kraus, Biochimica et Biophysica Acta (BBA)-Biomembranes, 1712, 212 (2005).

    CAS  Article  Google Scholar 

  22. 22.

    K. A. Naidu, Nutr. J., 2, 7 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    D. J. MacKay and A. L. Miller, Altern. Med. Rev., 8, 359 (2003).

    PubMed  Google Scholar 

  24. 24.

    M. Stevanović, J. Savić, B. Jordović, and D. Uskoković, Colloids Surf. B: Biointerfaces, 59, 215 (2007).

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    L. Avizheh, T. Peirouvi, K. Diba, and A. Fathi-Azarbayjani, Ther. Deliv., 10, 757 (2019).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    R. Najafi-Taher, M. A. Derakhshan, R. Faridi-Majidi, and A. Amani, RSC Adv., 5, 50462 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    A. Chanda, J. Adhikari, A. Ghosh, S. R. Chowdhury, S. Thomas, P. Datta, and P. Saha, Int. J. Biol. Macromol., 116, 774 (2018).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    M. Hu, E. E. Sabelman, Y. Cao, J. Chang, and V. R. Hentz, J. Biomed. Mater. Res. Part B: Appl.Biomater., 67, 586 (2003).

    Article  CAS  Google Scholar 

  29. 29.

    A. C. Bean, A. J. Almarza, and K. A. Athanasiou, Proc. Inst. Mech. Eng. H: J. Eng. Med., 220, 439 (2006).

    CAS  Article  Google Scholar 

  30. 30.

    P. L. Lu, J. Y. Lai, D. H. K. Ma, and G. H. Hsiue, J. Biomater. Sci., Polym. Ed., 19, 1 (2008).

    Article  Google Scholar 

  31. 31.

    J. J. Young, K. M. Cheng, T. L. Tsou, H. W. Liu, and H. J. Wang, J. Biomater. Sci., Polym. Ed., 15, 767 (2004).

    CAS  Article  Google Scholar 

  32. 32.

    M. N. Collins and C. Birkinshaw, J. Appl. Polym. Sci., 104, 3183 (2007).

    CAS  Article  Google Scholar 

  33. 33.

    C. Pattamaprom, W. Hongrojjanawiwat, P. Koombhongse, P. Supaphol, T. Jarusuwannapoo, and R. Rangkupan, Macromol. Mater. Eng., 291, 840 (2006).

    CAS  Article  Google Scholar 

  34. 34.

    C. J. Luo, E. Stride, and M. Edirisinghe, Macromolecules, 45, 4669 (2012).

    CAS  Article  Google Scholar 

  35. 35.

    Z. Wang, Y. Qian, L. Li, L. Pan, L. W. Njunge, L. Dong, and L. Yang, J. Biomater. Appl., 30, 686 (2016).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    N. Mangır, A. J. Bullock, S. Roman, N. Osman, C. Chapple, and S. MacNeil, Acta Biomater., 29, 188 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. 37.

    S. N. Park, H. J. Lee, K. H. Lee, and H. Suh, Biomaterials, 24, 1631 (2003).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    J. F. Kirk, G. Ritter, I. Finger, D. Sankar, J. D. Reddy, J. D. Talton, C. Nataraj, S. Narisawa, J. L. Millan, and R. R. Cobb, Biomatter, 3, e25633 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    H. M. Liou, L. R. Rau, C. C. Huang, M. R. Lu, and F. Y. Hsu, J. Nanomater., 2013, 6 (2013).

    Article  CAS  Google Scholar 

  40. 40.

    N. Gokalp, C. Ulker, and Y. A. Guvenilir, J. Polym. Mater., 33, 87 (2016).

    CAS  Google Scholar 

  41. 41.

    A. Abdolmaleki and Z. Mohamadi, Colloid Polym. Sci., 291, 1999 (2013).

    CAS  Article  Google Scholar 

  42. 42.

    S. H. Chen, C. H. Chen, K. T. Shalumon, and J. P. Chen, Int. J. Nanomed., 9, 4079 (2014).

    Article  CAS  Google Scholar 

  43. 43.

    N. Ashwinkumar, S. Maya, and R. Jayakumar, RSC Adv., 4, 49547 (2014).

    CAS  Article  Google Scholar 

  44. 44.

    H. Liu, K. Li, L. Lan, J. Ma, Y. Zeng, L. Xu, and D. Wu, J. Mater. Chem. B, 2, 5238 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    A. Umer, S. Naveed, N. Ramzan, M. S. Rafique, and M. Imran, Matéria (Rio de Janeiro), 19, 197 (2014).

    Article  Google Scholar 

  46. 46.

    C. Y. Panicker, H. T. Varghese, and D. Philip, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 65, 802 (2006).

    Article  CAS  Google Scholar 

  47. 47.

    R. Othayoth, P. Mathi, K. Bheemanapally, L. Kakarla, and M. Botlagunta, J. Microencapsul., 32, 578 (2015).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    M. M. Sk and C. Y. Yue, J. Mater. Chem. A, 2, 2830 (2014).

    CAS  Article  Google Scholar 

  49. 49.

    J. H. Yang, S. Y. Lee, Y. S. Han, K. C. Park, and J. H. Choy, Bull. Korean Chem. Soc., 24, 499 (2003).

    CAS  Article  Google Scholar 

  50. 50.

    T. Yokoyama, KONA Powder and Particle J., 23, 7 (2005).

    CAS  Article  Google Scholar 

  51. 51.

    E. Bayrak, B. Ozcan, and C. Erisken, J. Polym. Eng., 37, 99 (2017).

    CAS  Article  Google Scholar 

  52. 52.

    A. Diaconu, L. E. Nita, M. Bercea, A. P. Chiriac, A. G. Rusu, and D. Rusu, Biochem. Eng. J., 125, 135 (2017).

    CAS  Article  Google Scholar 

  53. 53.

    M. Van Beek, A. Weeks, L. Jones, and H. Sheardown, J. Biomater. Sci., Polym. Ed., 19, 1425 (2008).

    CAS  Article  Google Scholar 

  54. 54.

    S. R. Son, N. T. B. Linh, H. M. Yang, and B. T. Lee, Sci. Technol. Adv. Mater., 14, 015009 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. 55.

    L. Li, Y. Qian, C. Jiang, Y. Lv, W. Liu, L. Zhong, K. Cai, S. Li, and L. Yang, Biomaterials, 33, 3428 (2012).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    C. Gandhimathi, X. H. E. Neo, P. Jayaraman, J. R. Venugopal, S. Ramakrishna, and S. D. Kumar, J. Drug Metab. Toxicol., 5, 177 (2015).

    Google Scholar 

  57. 57.

    S. Xu, J. Li, A. He, W. Liu, X. Jiang, J. Zheng, C. C. Han, B. S. Hsiao, B. Chu, and D. Fang, Polymer, 50, 3762 (2009).

    CAS  Article  Google Scholar 

  58. 58.

    T. G. Kim, H. J. Chung, and T. G. Park, Acta Biomater., 4, 1611 (2008).

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    D. R. Figueira, S. P. Miguel, K. D. de Sá, and I. J. Correia, Int. J. Biol. Macromol., 93, 1100 (2016).

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    M. Jaganjac, L. Milković, A. Čipak Gašparović, M. Mozetič, N. Recek, N. Žarković, and A. Vesel, Mater. Tehnol., 46, 53 (2012).

    CAS  Google Scholar 

  61. 61.

    M. Lebourg, J. R. Rochina, T. Sousa, J. Mano, and J. L. G. Ribelles, J. Biomed. Mater. Res. Part A, 101, 518 (2013).

    Article  CAS  Google Scholar 

  62. 62.

    B. Tavsanli and O. Okay, Eur. Polym. J., 94, 185 (2017).

    CAS  Article  Google Scholar 

  63. 63.

    B. R. Mintz and J. A. Cooper Jr., J. Biomed. Mater. Res. Part A, 102, 2918 (2014).

    Article  CAS  Google Scholar 

  64. 64.

    K. Ghosal, S. Thomas, N. Kalarikkal, and A. Gnanamani, J. Polym. Res., 21, 410 (2014).

    Article  CAS  Google Scholar 

  65. 65.

    X. Zhao, Y. S. Lui, P. W. J. Toh, and S. C. J. Loo, Materials, 7, 7398 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    S. Yan, Q. Zhang, J. Wang, Y. Liu, S. Lu, M. Li, and D. L. Kaplan, Acta Biomater., 9, 6771 (2013).

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    J. H. Collier, J. P. Camp, T. W. Hudson, and C. E. Schmidt, J. Biomed. Mater. Res., 50, 574 (2000).

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    K. Ghosal, A. Manakhov, L. Zajíčková, and S. Thomas, Aaps Pharmscitech, 18, 72 (2017).

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    S. Deepthi, K. Jeevitha, M. N. Sundaram, K. P. Chennazhi, and R. Jayakumar, Chem. Eng. J., 260, 478 (2015).

    CAS  Article  Google Scholar 

  70. 70.

    K. M. Choi, Y. K. Seo, H. H. Yoon, K. Y. Song, S. Y. Kwon, H. S. Lee, and J. K. Park, J. Biosci. Bioeng., 105, 586 (2008).

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    J. Y. Zhang, B. A. Doll, E. J. Beckman, and J. O. Hollinger, Tissue Eng., 9, 1143 (2003).

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    S. Sridhar, J. R. Venugopal, and S. Ramakrishna, J. Biomed. Mater. Res. Part A, 103, 3431 (2015).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sadegh Nourbakhsh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Janmohammadi, M., Nourbakhsh, M.S. & Bonakdar, S. Electrospun Skin Tissue Engineering Scaffolds Based on Polycaprolactone/Hyaluronic Acid/L-ascorbic Acid. Fibers Polym 22, 19–29 (2021). https://doi.org/10.1007/s12221-021-0036-8

Download citation

Keywords

  • Polycaprolactone
  • Hyaluronic acid
  • Electrospinning
  • L-ascorbic acid
  • Skin tissue engineering