Improved Electrical Conductivity of Polyurethane Nanoweb Coated with Graphene Ink through Heat Treatment

Abstract

This study found out a heat treatment condition to improve the electrical conductivity of polyurethane (PU) nanoweb treated with non-oxidized graphene (nOG) ink. Electrical conductivity was imparted to the PU nanoweb (Pardam, s.r.o., Czech Republic) by a dip-coating process utilizing 1 wt% of nOG ink. To enhance the electrical conductivity, post heat treatment was conducted. The first specimen was completely dried at room temperature (20 °C) for 24 hours (Specimen GU), and the rest of the specimens were treated at 40 °C, 60 °C, 80 °C, and 100 °C for 1 hour (Specimen G40, G60, G80, and G100). To confirm the microstructure of the specimens, a FE-SEM (Field emission scanning electron microscopy) was utilized. The linear electrical resistance was evaluated using a Digital multimeter. Also, the thickness and weight of the specimens were measured by Cross section polisher and Analytical balance respectively. After that, the chemical structures were inspected using a FT-IR (Fourier transform infrared spectroscopy). As a result, when the heat treatment temperature was higher, the specimens were well immersed and more nOG ink was covered onto the surface of the treated specimens. Also, the electrical resistance of the specimens decreased in accordance with increased heat treatment temperature. The thickness and add-on of the specimens increased as the heat treatment temperature increased. The changes of band position of C=O, C-O-C, -NH- bending were observed by FT-IR analysis. Therefore, this study demonstrated that the heat treatment temperature played a significant role in the improvement of electrical conductivity, and the nOG/PU nanoweb had the most enhanced electrical conductivity when treated at 100 °C.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    R. Paradiso and D. De Rossi, Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 3629, 2008.

  2. 2.

    E. Lee and G. Cho, Text. Res. J., 89, 2938 (2019).

    CAS  Article  Google Scholar 

  3. 3.

    M. Ghahremani Honarvar and M. Latifi, J. Text. Inst., 108, 631 (2017).

    Article  Google Scholar 

  4. 4.

    I. Kim, E. Lee, E. Jang, and G. Cho, Text. Res. J., 88, 1215 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    E. Lee, I. Kim, H. Liu, and G. Cho, Fiber. Polym., 18, 1749 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    L. Persano, A. Camposeo, C. Tekmen, and D. Pisignano, Macromol. Mater. Eng., 298, 504 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    F. Cengiz and O. Jirsak, Fiber. Polym., 10, 177 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    D. Kimmer, P. Slobodian, D. Petráš, M. Zatloukal, R. Olejník, and P. Sáha, J. Appl. Polym. Sci., 111, 2711 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    X. Zhang and Y. Lu, Polym. Rev., 54, 677 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Y. Ahn, S. Yoon, and K. Kim, Text. Sci. Eng., 49, 47 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    E. Lee and G. Cho, Smart Mater. Struct., 28, 045004 (2019).

    CAS  Article  Google Scholar 

  12. 12.

    I. Kim and G. Cho, Smart Mater. Struct., 27, 075006 (2018).

    Article  Google Scholar 

  13. 13.

    H. Ahn, C. Park, and S. Chung, Text. Res. J., 81, 1438 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    J. Sung, H. Kim, H. Jin, H. Choi, and I. Chin, Macromolecules, 37, 9899 (2004).

    CAS  Article  Google Scholar 

  15. 15.

    H. Kim, H. Jin, S. Myung, M. Kang, and I. Chin, Macromol. Rapid Commun., 27, 146 (2006).

    Article  Google Scholar 

  16. 16.

    A. Laforgue and L. Robitaille, Synth. Met., 158, 577 (2008).

    CAS  Article  Google Scholar 

  17. 17.

    V. Gupta and T. Saleh, Environ. Sci. Pollut. Res., 20, 2828 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    S. Stankovich, D. Dikin, G. Dommett, K. Kohlhaas, E. Zimney, E. Stach, R. Piner, S. Nguyen, and R. Ruoff, Nature, 442, 282 (2006).

    CAS  Article  Google Scholar 

  19. 19.

    G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol., 3, 270 (2008).

    CAS  Article  Google Scholar 

  20. 20.

    C. Wu, T. Kim, F. Li, and T. Guo, ACS Nano, 10, 6449 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    E. Jang and G. Cho, Fashion Text. Res. J., 20, 101 (2018).

    Article  Google Scholar 

  22. 22.

    E. Jang, H. Liu, and G. Cho, Text. Res. J., 89, 4980 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    D. Brownson, D. Kampouris, and C. Banks, J. Power Sources, 196, 4873 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    Q. Wu, C. Liu, L. Lei, X. Yan, B. Wang, X. Liu, and Y. Lv, Transplant Proc., 42, 1963 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    K. Zhang, L. Zhang, X. Zhao, and J. Wu, Chem. Mater., 22, 1392 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    S. Stankovich, D. Dikin, R. Piner, K. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. Nguyen, and R. Ruoff, Carbon, 45, 1558 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    J. Choi, W. Kim, E. Lee, and G. Cho, Fiber. Polym., 21, 978 (2020).

    CAS  Article  Google Scholar 

  28. 28.

    H. Shi, C. Liu, Q. Jiang, and J. Xu, Adv. Electron. Mater., 1, 1500017 (2015).

    Article  Google Scholar 

  29. 29.

    B. Cipriano, A. Kota, A. Gershon, C. Laskowski, T. Kashiwagi, H. Bruck, and S. Raghavan, Polymer, 49, 4846 (2008).

    CAS  Article  Google Scholar 

  30. 30.

    L. Song, F. Khoerunnisa, W. Gao, W. Dou, T. Hayashi, K. Kaneko, M. Endo, and P. Ajayan, Carbon, 52, 608 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    G. Trovati, E. Sanches, S. Neto, Y. Mascarenhas, and G. Chierice, J. Appl. Polym. Sci., 115, 263 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. NRF-2016R1A2B4014668, NRF-2019R1F1A1060955) and the Brain Korea 21 Plus Project of Dept. of Clothing and Textiles, Yonsei University in 2019.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gilsoo Cho.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, W., Lee, E., Choi, J. et al. Improved Electrical Conductivity of Polyurethane Nanoweb Coated with Graphene Ink through Heat Treatment. Fibers Polym 21, 1195–1199 (2020). https://doi.org/10.1007/s12221-020-9912-x

Download citation

Keywords

  • Polyurethane (PU) nanoweb
  • Non-oxidized graphene (nOG) ink
  • Heat treatment
  • Smart textile