Sorbent Textiles for Colored Wastewater Made from Orange Based Pectin Nano-hydrogel


In this article, the synthesis of pectin nano hydrogel, it’s having high absorption ability and its related applications in the treatment of colored wastewater have been investigated. Pectin has been extracted from orange peel as a good source of pectin and the degree of esterification (DE) of pectin as a main parameter on the gel formation were determined. Pectin nano hydrogel was synthesized using Calcium Chloride as a cross-linking agent. The nanometer size and dye adsorption ability of hydrogel particles from colored wastewater have been confirmed by the SEM and UV-Vis spectroscopy methods, respectively. At the next step, the dye adsorption ability of the treated polyester fabrics with pectin nano hydrogel was assessed and results indicated the high adsorption capacity of synthesized nano hydrogel. More specifically the spectrophotometry method indicated that treated polyester fabrics with chitosan and pectin nano hydrogel showed more dye absorption in compare to pectin and cationic surface agent treated fabrics.

This is a preview of subscription content, log in to check access.


  1. 1.

    B. Sharma, L. Naresh, N. Dhuldhoya, S. Merchant, and U. Merchant, Times Food Processing J., 23, 44 (2006).

    Google Scholar 

  2. 2.

    R. Das, A. Panda, and S. J. C. Pal, Cellulose, 19, 933 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    V. Van Tran, D. Park, Y.-C. J. E. S. Lee, and P. Research, Environ. Sci. Pollution Res., 25, 24569 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    N. P. Birch, L. E. Barney, E. Pandres, S. R. Peyton, and J. D. J. B. Schiffinan, Biomacromolecules, 16, 1837 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    L. S. Liu, J. Kost, F. Yan, and R. C. J. P. Spiro, Polymers, 4, 997 (2012).

    Article  Google Scholar 

  6. 6.

    M. A. Atmodjo, Z. Hao, and D. Mohnen, Annu. Rev. Plant. Biol., 64, 747 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    P. Sriamornsak, Silpakorn Univ. Int. J., 3, 206 (2003).

    Google Scholar 

  8. 8.

    C. Voiniciuc, K. A. Engle, M. Günl, S. Dieluweit, M. H.-W. Schmidt, J.-Y. Yang, K. W. Moremen, D. Mohnen, and B. J. P. P. Usadel, Plant Physiology, 178, 1045 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    F. Munarin, M. C. Tanzi, and P. Petrini, Biological Macromolecules, 51, 681 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    S. Thakur, J. Chaudhary, V. Kumar, and V. K. Thakur, Environ. Manag, 238, 210 (2019).

    CAS  Google Scholar 

  11. 11.

    R. Wang, X. Cai, and F. Shen, Appl. Surface Sci., 305, 352 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    D.-Q. Li, J. Wang, Z.-G. Guo, J. Li, and J. Shuai, Molecular Liquids, 238, 36 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    A. C. Khorasani and S. A. Shojaosadati, Environ. Chem. Eng., 7, 103062 (2019).

    CAS  Article  Google Scholar 

  14. 14.

    R. Kumar, R. K. Sharma, and A. P. Singh, Environ. Chem. Eng., 6, 6037 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    H. Mittal, A. Maity, and S. S. Ray, Appl. Surface Sci., 364, 917 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    V. K. Gupta, T. A. Saleh, D. Pathania, B. S. Rathore, and G. J. I. Sharma, Ionics, 21, 1787 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    S. Lapwanit, T. Sooksimuang, and T. Trakulsujaritchok, Environ. Chem. Eng., 6, 6221 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    A. Karim, B. Achiou, A. Bouazizi, A. Aaddane, M. Ouammou, M. Bouziane, J. Bennazha, and S. A. Younssi, Environ. Chem. Eng., 6, 1475 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    A. F. S. Costa, C. D. C. Albuquerque, A. A. Salgueiro, L. A. J. P. S. Sarubbo, and E. Protection, Process Saf. Environm. Prot., 118, 203 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    R. Goswami, M. Gogoi, H. J. Borah, P. G. Ingole, and S. Hazarika, Environ. Chem. Eng., 6, 6139 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    X. C. Ruan, M. Y. Liu, Q. F. Zeng, and Y. H. Ding, Sep. Purif. Technol., 74, 195 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    J. Mao, S. W. Won, J. Min, and Y. S. Yun, Korean J. Chem. Eng., 25, 1060 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    P. Nidheesh, M. Zhou, and M. A. Oturan, Chemosphere, 197, 210 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    M. R. Awual, Y. Miyazaki, T. Taguchi, H. Shiwaku, and T. Yaita, Chem. Eng., 291, 128 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    S. Schiewer and M. Iqbal, Hazardous Materials, 177, 899 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    I. Braccini and S. J. B. Pérez, Biomacromolecules, 2, 1089 (2001).

    CAS  Article  Google Scholar 

  27. 27.

    N. T. X. Sam, Sci. Technol., 55, 195 (2017).

    Google Scholar 

  28. 28.

    A. Bashari, N. Hemmatinejad, and A. Pourjavadi, Polym. Adv. Technol, 24, 797 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    P. Agrawal, M. Parvinzadeh Gashti, and J. Willoughby, “Surface and Bulk Modification of Synthetic Textiles to Improve Dye Ability”, p.261, Saxion University of Applied Sciences, 2011.

  30. 30.

    Z. Košt’álová, Z. Hromádková, A. Ebringerová, M. Polovka, T. E. Michaelsen, and B. S. Paulsen, Ind. Crops Prod., 41, 127 (2013).

    Article  Google Scholar 

  31. 31.

    A. T. Paulino, M. R. Guilherme, A. V. Reis, G. M. Campese, E. C. Muniz, and J. Nozaki, Colloid and Interface Sci., 301, 55 (2006).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Nahid Hemmatinejad or Azadeh Bashari.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shakibi, S., Hemmatinejad, N. & Bashari, A. Sorbent Textiles for Colored Wastewater Made from Orange Based Pectin Nano-hydrogel. Fibers Polym 21, 1275–1282 (2020).

Download citation


  • Pectin
  • Nano hydrogel
  • Dye adsorption
  • Chitosan