Electrospun Porous Polylactic Acid Fibers Containing CdS for Degradation of Methylene Blue


The immobilization of photocatalyst in polymer fibers has been found to improve photodegradation of dye and recyclability of material. In this study, porous polylactic acid (PLA) fibers were utilized as photocatalyst support using electrospinning technique to synthesis the fibers. The cadmium sulfide (CdS) was embedded in fibers at the amount of 1 wt%, 3 wt%, and 5 wt% as photocatalyst agent with absorption in visible light range. The electrospun fibers experienced increasing in diameter for 2.6 times (from 175 nm to 450 nm), due to incorporation of CdS. The synthesized CdS has band gap of 2.35 eV, and its presence in composite fibers can be detected by using energy dispersive X-ray (EDX) and X-ray diffraction (XRD) analyses. The photodegradation was performed under low-powered halogen lamp, with 90 % removal of methylene blue (MB) after 10 hours of irradiation using CdS(3 wt%)/PLA fibers. This result shows higher performance in comparison with PLA and CdS which could only remove 57 % and 65 % of MB, respectively. The recyclability of composite was tested with satisfying performance; with around 60 % of MB removal was maintained after five times of recycle experiments.

This is a preview of subscription content, log in to check access.


  1. 1.

    F. Maria Drumond Chequer, G. A. R. De Olivera, E. Raquel Anastacio Ferraz, J. Cardoso, M. Zanoni, and D. P. De Olivera in “Eco-Friendly Textile Dyeing and Finishing”, pp.151–176, IntechOpen, Croatia, 2013.

  2. 2.

    M. C. Collivignarelli, A. Abbà, M. Carnevale Miino, and S. Damiani, J. Environ. Manag., 236, 727 (2019).

    CAS  Google Scholar 

  3. 3.

    D. Ayodhya and G. Veerabhadram, Materials Today Energy, 9, 83 (2018).

    Google Scholar 

  4. 4.

    L. Hu, G. Deng, W. Lu, S. Pang, and X. Hu, Appl. Surface Sci., 410, 401 (2017).

    CAS  Google Scholar 

  5. 5.

    B. Pant, H. R. Pant, N. A. M. Barakat, M. Park, T.-H. Han, B. H. Lim, and H.-Y. Kim, Ceram. Int., 40, 1553 (2014).

    CAS  Google Scholar 

  6. 6.

    X. Cheng, Y. Jia, J. Qiang, L. Wen, C. Zhang, X. Yang, and L. Liang, J. Polym. Eng., 37, 107 (2017).

    CAS  Google Scholar 

  7. 7.

    S. F. Anis, A. Khalil, Saepurahman, G. Singaravel, and R. Hashaikeh, Microporous Mesoporous Mater., 236, 176 (2016).

    CAS  Google Scholar 

  8. 8.

    A. Haider, S. Haider, and I.-K. Kang, Arabian J. Chem., 11, 1165 (2018).

    CAS  Google Scholar 

  9. 9.

    Q. Liu, J. Li, Y. Zhao, Y. Zhou, and C. Li, Mater. Lett., 138, 89 (2015).

    CAS  Google Scholar 

  10. 10.

    B. Pant, H. R. Pant, M. Park, Y. Liu, J.-W. Choi, N. A. M. Barakat, and H.-Y. Kim, Catal. Commun., 50, 63 (2014).

    CAS  Google Scholar 

  11. 11.

    C. Su, C. Shao, and Y. Liu, J. Colloid. Interface Sci., 359, 220 (2011).

    CAS  PubMed  Google Scholar 

  12. 12.

    Z. Wei, Y. Li, S. Luo, C. Liu, D. Meng, M. Ding, and G. Zeng, Sep. Purif. Technol., 122, 60 (2014).

    CAS  Google Scholar 

  13. 13.

    H. A. M. Ardoña, F. U. Paredes, I. H. J. Arellano, and S. D. Arco, Mater. Lett., 91, 96 (2013).

    Google Scholar 

  14. 14.

    P. Ferdowsi and J. Mokhtari, Polym. Bull., 72, 2363 (2015).

    CAS  Google Scholar 

  15. 15.

    T. P. Mthethwa, M. J. Moloto, A. De Vries, and K. P. Matabola, Mater. Res. Bull., 46, 569 (2011).

    CAS  Google Scholar 

  16. 16.

    N. Soltani, E. Saion, W. Mahmood Mat Yunus, M. Navasery, G. Bahmanrokh, M. Erfani, M. R. Zare, and E. Gharibshahi, Solar Energy, 97, 147 (2013).

    CAS  Google Scholar 

  17. 17.

    V. Krishnakumar, R. Ranjith, J. Jayaprakash, S. Boobas, and J. Venkatesan, J. Mater. Sci.-Mater. El., 28, 13990 (2017).

    CAS  Google Scholar 

  18. 18.

    D. Ayodhya, M. Venkatesham, A. S. Kumari, G. B. Reddy, D. Ramakrishna, and G. Veerabhadram, J. Fluoresc., 25, 1481 (2015).

    CAS  PubMed  Google Scholar 

  19. 19.

    D. Ayodhya, M. Venkatesham, A. Santoshi kumari, G. Bhagavanth Reddy, and G. Veerabhadram, Int. J. Ind. Chem., 6, 261 (2015).

    CAS  Google Scholar 

  20. 20.

    N. Qin, Y. Liu, W. Wu, L. Shen, X. Chen, Z. Li, and L. Wu, Langmuir, 31, 1203 (2015).

    CAS  PubMed  Google Scholar 

  21. 21.

    J.-W. Liang, G. Prasad, S.-C. Wang, J.-L. Wu, and S.-G. Lu, Appl. Sci., 9, 1014 (2019).

    CAS  Google Scholar 

  22. 22.

    D. Zhang, X.-Z. Jin, T. Huang, N. Zhang, X.-D. Qi, J.-H. Yang, Z.-W. Zhou, and Y. Wang, ACS Appl. Mater. Interfaces, 11, 5073 (2019).

    CAS  PubMed  Google Scholar 

  23. 23.

    H. Li, Z. Wang, H. Zhang, and Z. Pan, Polymers, 10, 1085 (2018).

    PubMed Central  Google Scholar 

  24. 24.

    X. Hou, Y. Cai, M. Mushtaq, X. Song, Q. Yang, F. Huang, and Q. Wei, J. Nanosci. Nanotechnol., 18, 5617 (2018).

    CAS  PubMed  Google Scholar 

  25. 25.

    B. R. C. Vale, F. O. Silva, M. S. Carvalho, E. Raphael, J. L. Ferrari, and M. A. Schiavon, Crystals, 6, 133 (2016).

    Google Scholar 

  26. 26.

    A. Aboulaich, D. Billaud, M. Abyan, L. Balan, J. J. Gaumet, G. Medjadhi, J. Ghanbaja, and R. Schneider, ACS Appl. Mater. Interfaces, 4, 2561 (2012).

    CAS  PubMed  Google Scholar 

  27. 27.

    Z. Liu, J. Zhao, W. Li, J. Xing, and L. Xu, Adsorp. Sci. Technol., 37, 389 (2018).

    Google Scholar 

  28. 28.

    Z. Qi, H. Yu, Y. Chen, and M. Zhu, Mater. Lett., 63, 415 (2009).

    CAS  Google Scholar 

  29. 29.

    H. Vargas-Villagran, A. Romo-Uribe, E. Teran-Salgado, M. Dominguez-Diaz, and A. Flores, Polym. Bull., 71, 2437 (2014).

    CAS  Google Scholar 

  30. 30.

    X. Dai, X. Li, and X. Wang, Chem. Eng. J., 338, 82 (2018).

    CAS  Google Scholar 

  31. 31.

    S. Kumar and J. K. Sharma, Mater. Sci.-Poland, 34, 368 (2016).

    CAS  Google Scholar 

  32. 32.

    U. Soni, V. Arora, and S. Sapra, CrystEngComm, 15, 5458 (2013).

    CAS  Google Scholar 

  33. 33.

    K. Mohanraj, D. Balasubramanian, and J. Chandrasekaran, J. Alloys. Compd., 779, 762 (2019).

    CAS  Google Scholar 

  34. 34.

    X. Dai, Y. Cao, X. W. Shi, and X. L. Wang, RSC Adv., 6, 71461 (2016).

    CAS  Google Scholar 

  35. 35.

    I. Restrepo, N. Benito, C. Medinam, R. V. Mangalaraja, P. Flores, and S. Rodriguez-Llamazares, Mater. Res. Express, 4, 105019 (2017).

    Google Scholar 

  36. 36.

    H. Tong, X. Zhan, X. Tian, J. Li, D. Qian, and D. Wu, J. Colloid. Interface Sci., 526, 384 (2018).

    CAS  PubMed  Google Scholar 

  37. 37.

    M. H. K. Al-Mamoori, D. K. Mahdi, and S. M. Al-Shrefi, AIP Conference Proceedings, 1968, 030011 (2018).

    Google Scholar 

  38. 38.

    K. Yuniarto, Y. A. Purwanto, S. Purwanto, B. A. Welt, H. K. Purwadaria, and T. C. Sunarti, AIP Conference Proceedings, 1725, 020101 (2016).

    Google Scholar 

  39. 39.

    K. Shameli, M. B. Ahmad, W. M. Z. W. Yunus, N. A. Ibrahim, R. A. Rahman, M. Jokar, and M. Darroudi, Int. J. Nanomed., 5, 573 (2010).

    CAS  Google Scholar 

  40. 40.

    Y. Dessie, A. Belay, and S. Girmay, Int. J. Photochem. Photobiol., 2, 81 (2017).

    Google Scholar 

  41. 41.

    H. Abdullah, D.-H. Kuo, Y.-R. Kuo, F.-A. Yu, and K. B. Cheng, J. Phys. Chem. C, 120, 7144 (2016).

    CAS  Google Scholar 

  42. 42.

    A. Z. Mohd Hir, H. A. Abdullah, Z. Zainal, and N. H. Lim, Catalysts, 7, 313 (2017).

    Google Scholar 

  43. 43.

    P. Y. Lin, Z. S. Wu, Y. D. Juang, Y. S. Fu, and T. F. Guo, Microelectron. Eng., 149, 73 (2016).

    CAS  Google Scholar 

  44. 44.

    Y. T. Xue, Z. S. Wu, X. F. He, X. Yang, X. Q. Chen, and Z. Z. Gao, Nanomaterials, 9, 222 (2019).

    CAS  PubMed Central  Google Scholar 

  45. 45.

    Z. Q. Yu and S. S. C. Chuang, Appl. Catal. B-Environ., 83, 277 (2008).

    CAS  Google Scholar 

  46. 46.

    S. Rehman, M. Tariq, J. Ali Shah, R. Ahmad, S. Muhammad, A. Mehmood, A. Ullah, B. Ismail, and M. Bilal, Biointerface Res. Appl. Chem., 7, 2021 (2017).

    CAS  Google Scholar 

  47. 47.

    X. Chang, M. Peng, J. Yang, T. Wang, Y. Liu, J. Zheng, and X. Li, RSC Adv., 5, 75098 (2015).

    CAS  Google Scholar 

  48. 48.

    S. Y. Janbandhu, S. R. Munishwar, G. K. Sukhadeve, and R. S. Gedam, Mater. Charact., 152, 230 (2019).

    CAS  Google Scholar 

  49. 49.

    X. Yang, Y. Yang, B. Wang, T. Wang, Y. Wang, and D. Meng, Solid State Sci., 92, 31 (2019).

    CAS  Google Scholar 

Download references


This study was supported by Universiti Teknologi PETRONAS-Universitas Pertamina joint research grant with cost center 015MED-003.

Author information



Corresponding author

Correspondence to Nonni Soraya Sambudi.

Electronic Supplementary Material (ESM)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ho, C.S., Abidin, N.H.Z., Nugraha, M.W. et al. Electrospun Porous Polylactic Acid Fibers Containing CdS for Degradation of Methylene Blue. Fibers Polym 21, 1212–1221 (2020). https://doi.org/10.1007/s12221-020-9756-4

Download citation


  • CdS
  • PLA
  • Electrospinning
  • Immobilization
  • Porous fiber