Simulation of Breakup Process of Polymer Jet during Melt Blowing

Abstract

A Level- set method coupled with the Navier-Stokes equations was applied to simulate the breakup process of polymer jet during melt blowing. The initial perturbation was represented by a trigonometric function. The theory of the polymer jet breakup process driven by surface tension was explained and the breakup process was illustrated visually by simulation results. By varying the parameter values in the model, the effects of viscosity, diameter, surface tension, and surrounding perturbation on the fiber breakup process were discussed. Experiments were conducted to explore the effects of processing conditions on the fiber breakup process and validate the simulation results. It is suggested that lowering the surface tension of polymer through physical and chemical modification can help to reduce the possibility of polymer jet breakup and produce melt blown nonwovens with better quality.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. Balogh, B. Farkas, K. Faragó, A. Farkas, I. Wagner, I. Van Assche, G. Verreck, Z. K. Nagy, and G. Marosi, J. Pharm. Sci., 104, 1767 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    D. Lukas, F. Sanetrnik, J. Chvojka, J. Erben, K. Pilarova, L. Blazkova, O. Novak, J. Havlicek, P. Mikes, E. Kuzelova Kostakova, E. Prosecka, and V. Jencova, Mater. Lett., 143, 172 (2014).

    Google Scholar 

  3. 3.

    W. Wu, T. Hirogaki, E. Aoyama, M. Ikegaya, and H. Sota, J. Eng. Mater. Technol., 141, 021004 (2018).

    Article  Google Scholar 

  4. 4.

    Y. Pu, J. Zheng, F. Chen, Y. Long, H. Wu, Q. Li, S. Yu, X. Wang, and X. Ning, Polymers, 10, 959 (2018).

    Article  Google Scholar 

  5. 5.

    C. J. Ellison, A. Phatak, D. W. Giles, C. W. Macosko, and F. S. Bates, Polymer, 48, 3306 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    D. H. Tan, Ph.D. Dissertation, UMN, Minnesota, 2011.

    Google Scholar 

  7. 7.

    T. Chen, X. Wang, and X. Huang, Text. Res. J., 75, 76 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    M. Guo, H. Liang, Z. Luo, Q. Chen, and W. Wei, Fiber. Polym., 17, 257 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    D. H. Tan, P. K. Herman, A. Janakiraman, F. S. Bates, S. Kumar, and C. W. Macosko, Chem. Eng. Sci., 80, 342 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    M. A. Hassan, N. Anantharamaiah, S. A. Khan, and B. Pourdeyhimi, Ind. Eng. Chem. Res., 55, 2049 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Y. Wang and X. Wang, Polym. Eng. Sci., 54, 110 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    F. Zuo, D. H. Tan, Z. Wang, S. Jeung, C. W. MacOsko, and F. S. Bates, ACS Macro Lett., 2, 301 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    J. Eggers, Rev. Mod. Phys., 69, 865 (1997).

    CAS  Article  Google Scholar 

  14. 14.

    Rayleigh, Lord, London, Edinburgh, Dublin Philos. Mag. J. Sci., 34, 145 (1892).

    Article  Google Scholar 

  15. 15.

    R. Mead-Hunter, A. J. C. King, and B. J. Mullins, Langmuir, 28, 6731 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    D. Rodríguez, Int. J. Multiph. Flow, 88, 50 (2017).

    Article  Google Scholar 

  17. 17.

    D. Lukas, N. Pan, A. Sarkar, M. Weng, J. Chaloupek, E. Kostakova, L. Ocheretna, P. Mikes, M. Pociute, and E. Amler, Phys. A Stat. Mech. Appl., 389, 2164 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    J. Yang and J. Kim, Int. J. Multiph. Flow, 105, 84 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    W. Han, G. S. Bhat, and X. Wang, Ind. Eng. Chem. Res., 55, 3150 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    S. Tomotika, Proc. R. Soc. London. Ser. A — Math. Phys. Sci., 150, 322 (1935).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 11672073), Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University (No. CUSF-DH-D-2019030).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yongchun Zeng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hao, X., Zeng, Y. Simulation of Breakup Process of Polymer Jet during Melt Blowing. Fibers Polym 21, 1222–1228 (2020). https://doi.org/10.1007/s12221-020-9745-7

Download citation

Keywords

  • Melt blowing
  • Surface tension
  • Fiber breakup
  • Simulation