Eco-friendly Polypyrrole-coated Cocozelle Composites for Supercapacitor Application

Abstract

Cocozelle is essentially consisted of hemicellulose and lignin with a hierarchically porous structure. Herein, cocozelle slices after freeze-drying were employed as green substrates to support the growth of polypyrrole (PPy) via a facile oxidative polymerization approach. The cocozelle surface was densely covered with sheet-like PPy due to the hydrogen bonding between PPy and cocozelle. The PPy/cocozelle composites could be facilely utilized as supercapacitor electrodes, which showed a high specific capacitance of 1108 F g−1 with an energy density of 70.5 Wh kg−1 and a power density of 398 W kg−1 at a charge/discharge current density of 0.8 mA cm−2 as well as desirable cycling life with a capacitance retention rate of 76.9 % after 1000 cycles. Moreover, 95.3 % of the initial specific capacitance obtained at 0.2 mA cm−2 could be reached as the current density increased to 1.6 mA cm−2. These results demonstrate that cocozelle could be used as a superior alternative biomass-derived substrate for the developments of eco-friendly and renewable energy storage devices.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    D. Yu, Q. Qian, L. Wei, W. Jiang, K. Goh, J. Wei, J. Zhang, and Y. Chen, Chem. Soc. Rev., 44, 647 (2015).

    CAS  PubMed  Google Scholar 

  2. 2.

    Y. Song, T.-Y. Liu, X.-X. Xu, D.-Y. Feng, Y. Li, and X.-X. Liu, Adv. Funct. Mater., 25, 4626 (2015).

    CAS  Google Scholar 

  3. 3.

    L. Hao, X. Li, and L. Zhi, Adv. Mater., 25, 3899 (2013).

    CAS  PubMed  Google Scholar 

  4. 4.

    M. Beidaghi and Y. Gogotsi, Energy Environ. Sci., 7, 867 (2014).

    CAS  Google Scholar 

  5. 5.

    J. Xu, D. Wang, Y. Yuan, W. Wei, L. Duan, L. Wang, H. Bao, and W. Xu, Org. Electron., 24, 153 (2015).

    CAS  Google Scholar 

  6. 6.

    S. Peng, L. Fan, W. Rao, Z. Bai, W. Xu, and J. Xu, J. Mater. Sci., 52, 1930 (2017).

    CAS  Google Scholar 

  7. 7.

    P. M. Kharade, J. V. Thombare, S. L. Kadam, S. B. Kulkarni, and D. J. Salunkhe, J. Mater. Sci., 28, 17908 (2017).

    CAS  Google Scholar 

  8. 8.

    H. Jiang, P. S. Lee, and C. Li, Energy Environ. Sci., 6, 41 (2012).

    Google Scholar 

  9. 9.

    L. Huang, W. Rao, L. Fan, J. Xu, Z. Bai, W. Xu, and H. Bao, Polymers, 10, 135 (2018).

    CAS  PubMed Central  Google Scholar 

  10. 10.

    M. Karnan, K. Subramani, N. Sudhan, N. Ilayaraja, and M. Sathish, ACS Appl. Mater. Interfaces, 8, 35191 (2016).

    CAS  PubMed  Google Scholar 

  11. 11.

    Y. Bo, Y. Zhao, Z. Cai, A. Bahi, C. Liu, and F. Ko, Cellulose, 25, 4079 (2018).

    CAS  Google Scholar 

  12. 12.

    Q. Xu, L. Fan, Y. Yuan, C. Wei, Z. Bai, and J. Xu, Cellulose, 23, 3987 (2016).

    CAS  Google Scholar 

  13. 13.

    S. Lv, F. Fu, S. Wang, J. Huang, and L. Hu, RSC Adv., 5, 2813 (2014).

    Google Scholar 

  14. 14.

    H. Luo, J. Dong, Y. Zhang, G. Li, R. Guo, G. Zuo, M. Ye, Z. Wang, Z. Yang, and Y. Wan, Chem. Eng. J., 334, 1148 (2018).

    CAS  Google Scholar 

  15. 15.

    J. Li, Y. Ren, Z. Ren, S. Wang, Y. Qiu, and J. Yu, J. Mater. Chem. A, 3, 23307 (2015).

    CAS  Google Scholar 

  16. 16.

    C. Fu, H. Zhou, R. Liu, and Z. Huang, Mater. Chem. Phys., 132, 596 (2012).

    CAS  Google Scholar 

  17. 17.

    H. Zhang, Z. Hu, M. Li, L. Hu, and S. Jiao, J. Mater. Chem. A, 2, 17024 (2014).

    CAS  Google Scholar 

  18. 18.

    Q. Meng, K. Cai, Y. Chen, and L. Chen, Nano Energy, 36, 268 (2017).

    CAS  Google Scholar 

  19. 19.

    G. G. Choi, S. J. Oh, S. J. Lee, and J. S. Kim, Bioresource Technol., 178, 99 (2015).

    CAS  Google Scholar 

  20. 20.

    F. C. Wu, R. L. Tseng, C. C. Hu, and C. C. Wang, J. Power Sources, 138, 351 (2004).

    CAS  Google Scholar 

  21. 21.

    T. E. Rufford, D. Hulicova-Jurcakova, Z. Zhu, and G. Q. Lu, Electrochem. Commun., 10, 1594 (2008).

    CAS  Google Scholar 

  22. 22.

    M. S. Balathanigaimani, W. G. Shim, M. J. Lee, K. Chan, J. W. Lee, and H. Moon, Electrochem. Commun., 10, 868 (2008).

    CAS  Google Scholar 

  23. 23.

    Z. Li, W. Lv, C. Zhang, B. Li, F. Kang, and Q. H. Yang, Carbon, 92, 11 (2014).

    Google Scholar 

  24. 24.

    T. E. Rufford, D. Hulicova-Jurcakova, K. Khosla, Z. Zhu, and Q. L. Gao, J. Power Sources, 195, 912 (2010).

    CAS  Google Scholar 

  25. 25.

    M. Wahid, D. Puthusseri, and S. Ogale, Energy Fuels, 28, 4233 (2014).

    CAS  Google Scholar 

  26. 26.

    B. Wang, Y. Wang, Y. Peng, X. Wang, N. Wang, J. Wang, and J. Zhao, Chem. Eng. J., 348, 850 (2018).

    CAS  Google Scholar 

  27. 27.

    X. Wu, W. Xing, J. Florek, J. Zhou, G. Wang, S. Zhuo, Q. Xue, Z. Yan, and F. Kleitz, J. Mater. Chem. A, 2, 18998 (2014).

    CAS  Google Scholar 

  28. 28.

    W. Kai, Z. Ning, S. Lei, Y. Rui, X. Tian, J. Wang, S. Yan, D. Xu, Q. Guo, and L. Lang, Electrochim. Acta, 166, 1 (2015).

    Google Scholar 

  29. 29.

    Y.-Y. Wang, B.-H. Hou, H.-Y. Lü, C.-L. Lü, and X.-L. Wu, Chemistryselect, 1, 1441 (2016).

    CAS  Google Scholar 

  30. 30.

    C. Chen, D. Yu, G. Zhao, B. Du, W. Tang, L. Sun, Y. Sun, F. Besenbacher, and M. Yu, Nano Energy, 27, 377 (2016).

    CAS  Google Scholar 

  31. 31.

    C. Yuan, H. Lin, H. Lu, E. Xing, Y. Zhang, and B. Xie, Appl. Energy, 178, 260 (2016).

    CAS  Google Scholar 

  32. 32.

    K. Sun, Q. Yang, Y. Zheng, G. Zhao, Y. Zhu, X. Zheng, and G. Ma, Int. J. Electrochem. Sci., 12, 2606 (2017).

    CAS  Google Scholar 

  33. 33.

    L. Ma, R. Liu, H. Niu, M. Zhao, and Y. Huang, Compos. Sci. Technol., 137, 87 (2016).

    CAS  Google Scholar 

  34. 34.

    S. Lyu, Y. Chen, S. Han, L. Guo, N. Yang, and S. Wang, RSC Adv., 7, 54806 (2017).

    CAS  Google Scholar 

  35. 35.

    S. Peng, L. Fan, C. Wei, X. Liu, H. Zhang, W. Xu, and J. Xu, Carbohydr. Polym., 157, 344 (2017).

    CAS  PubMed  Google Scholar 

  36. 36.

    S. Peng, L. Fan, C. Wei, H. Bao, H. Zhang, W. Xu, and J. Xu, Cellulose, 23, 2639 (2016).

    CAS  Google Scholar 

  37. 37.

    Y. Bu, M. Cao, Y. Jiang, L. Gao, Z. Shi, X. Xiao, M. Wang, G. Yang, Y. Zhou, and Y. Shen, Electrochim. Acta, 271, 624 (2018).

    CAS  Google Scholar 

  38. 38.

    J. Xu, L. Zhu, Z. Bai, G. Liang, L. Liu, D. Fang, and W. Xu, Org. Electron., 14, 3331 (2013).

    CAS  Google Scholar 

  39. 39.

    Y. Jiao, C. Wan, and J. Li, J. Mater Sci., 28, 2634 (2017).

    CAS  Google Scholar 

  40. 40.

    Z. Y. Jin, A. H. Lu, Y. Y. Xu, J. T. Zhang, and W. C. Li, Adv. Mater., 26, 3700 (2014).

    CAS  PubMed  Google Scholar 

  41. 41.

    G. Nyström, A. Razaq, M. Stemme, L. Nyholm, and A. Mihranyan, Nano Lett., 9, 3635 (2009).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    S. Li, D. Huang, J. Yang, B. Zhang, X. Zhang, G. Yang, M. Wang, and Y. Shen, Nano Energy, 9, 309 (2014).

    Google Scholar 

  43. 43.

    D. Wang, Y. X. Li, Z. Shi, H. L. Qin, L. Wang, X. F. Pei, and J. Jin, Langmuir, 26, 14405 (2010).

    CAS  PubMed  Google Scholar 

  44. 44.

    C. Wei, Q. Xu, Z. Chen, W. Rao, L. Fan, Y. Yuan, Z. Bai, and J. Xu, Carbohydr. Polym., 169, 50 (2017).

    CAS  PubMed  Google Scholar 

  45. 45.

    Y. Li, S. Qing, J. Zhou, and G. Yang, Carbohydr. Polym., 103, 496 (2014).

    CAS  PubMed  Google Scholar 

  46. 46.

    Y. Liu and M. Liu, Compos. Sci. Technol., 143, 56 (2017).

    CAS  Google Scholar 

  47. 47.

    Y. Wang, Y. Jie, L. Wang, D. Kai, Y. Qiang, and Q. Yin, ACS Appl. Mater. Interfaces, 9, 20124 (2017).

    CAS  PubMed  Google Scholar 

  48. 48.

    S. Li, C. Zhao, K. Shu, C. Wang, Z. P. Guo, G. G. Wallace, and H. K. Liu, Carbon, 79, 554 (2014).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Innovation Team Project of the Education Department of Hubei Province (No. T201507), Wuhan Science and Technology Bureau (No. 2016010101010016), the Natural Science Foundation of China (Nos. 51703170 and 21673167) and the National Key Research and Development Program of China (No. 2016YFA0101102).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Haifeng Bao or Jie Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ji, H., Zhang, C., Rao, W. et al. Eco-friendly Polypyrrole-coated Cocozelle Composites for Supercapacitor Application. Fibers Polym 21, 1300–1307 (2020). https://doi.org/10.1007/s12221-020-9375-0

Download citation

Keywords

  • Cocozelle
  • Polypyrrole
  • Supercapacitor
  • Green substrate