Experimental and CFD Analysis of Air Permeability of Warp-knitted Structures

Abstract

Functionality of technical textiles and apparels in a wide spectrum of end-uses is intensely dominated by their air permeability, which in turn depends on fabric porosity and structure. This work aims to investigate air permeability of warp-knitted fabrics using experimental and numerical simulation methods. Samples of locknit, three-needle satin and four-needle satin two-bar warp-knitted fabrics at tight, medium and loose densities together with single-bar 1×1 and 2×1 warp-knitted fabrics were knitted. The effect of loop density, underlap length and fabric structure on air permeability was investigated. The 3D geometry of locknit and single-bar 1×1 and 2×1 warp-knitted fabrics was modeled using CATIA. The structural geometry of a knitted loop as the unit cell of warp-knitted fabrics was simulated based on Vassiliadis model. The geometry models then were coupled with a computational fluid dynamics (CFD) model for flow simulation. Fluid flow through the fabric structure was simulated by numerically solving incompressible creeping Newtonian flow through the pore space of generated knitted structures using Fluent. The results were then compared with experimental data. It was found that 1×1 single-bar fabrics have higher air permeability than 2×1 single-bar fabrics. It was also found that single-bar fabrics show significantly higher air permeability compared to two-bar warp-knitted fabrics. For the two-bar fabrics, the results point to higher air permeability of locknit fabrics, followed by three-needle satin and four-needle satin. The results also indicated that increase in underlap length and loop density leads to reduction of both pore size and fabric porosity and therefore decreasing air permeability. It was found that the experimental and numerical results are acceptability compatible with error of less than 16 %. It was concluded that the proposed model is potentially capable of prediction of air permeability of single-bar and two-bar warp-knitted fabrics.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    X. Huang, Q. Wang, W. Zhou, D. Deng, Y. Zhao, D. Wen, and J. Li, Powder Technol., 283, 618 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    X. Huang, Y. He, W. Zhou, D. Deng, and Y. Zhao, Powder Technol., 343, 350 (2019).

    CAS  Article  Google Scholar 

  3. 3.

    Y. Ke, G. Havenith, J. Li, and X. Li, Fiber. Polym., 14, 1906 (2013).

    Article  Google Scholar 

  4. 4.

    X. Xiao, X. Zeng, P. Bandara, and P. Long, Text. Res. J., 82, 920 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    H. Mao, P. Ma, and J. Gaoming, J. Text. Inst., 108, 2090 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    N. Haleem, Z. A. Malik, M. H. Malik, T. Hussain, Q. Gillani, and A. Rehman, Fiber. Polym., 14, 1172 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    S. S. H. Dehkordi, M. Ghane, S. B. Abdellahi, and M. B. Soultanzadeh, Fiber. Polym., 18, 1804 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    P. Soltani, M. S. Johari, and M. Zarrebini, J. Ind. Text., 44, 738 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    X. Xiao, “Modeling the Structure-permeability Relationship for Woven Fabrics”, University of Nottingham UK, 2012.

    Google Scholar 

  10. 10.

    D. Mikučionienė, L. Milašiūtė, J. Baltušnikaitė, and R. Milašius, Fibres Text. East. Eur., 20, 66 (2012).

    Google Scholar 

  11. 11.

    S. Mavruz and R. T. Ogulata, Tekstil ve Konfeksiyon, 19, 29 (2009).

    Google Scholar 

  12. 12.

    Q. Chen, J. Fan, Y. Au, and M. K. Tang, Fiber. Polym., 16, 1430 (2015).

    Article  Google Scholar 

  13. 13.

    D. De Keyzer, “Warp Knitting of Metal Fibre Cloths for Use as Separation Material in Automotive Glass Production”, Ghent University, Belgium, 2012.

    Google Scholar 

  14. 14.

    A. K. Pradhan, D. Das, R. Chattopadhyay, and S. N. Singh, Powder Technol., 221, 101 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    T. Stylianopoulos, A. Yeckel, J. J. Derby, X.-J. Luo, M. S. Shephard, E. A. Sander, and V. H. Barocas, Phys. Fluids A, 20, 123601 (2009).

    Article  Google Scholar 

  16. 16.

    R. Abedkarimi, H. Hasani, P. Soltani, and Z. Talebi, J. Text. Inst., 111, 491 (2019).

    Article  Google Scholar 

  17. 17.

    M. C. Faessel, F. B. Delisee, and P. Castera, Compos. Sci. Technol., 65, 1931 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    S. Jaganathan, H. Vahedi Tafreshi, and B. Pourdeyhimi, Chem. Eng. Sci., 63, 244 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    F. T. Peirce, Text. Res. J., 17, 123 (1947).

    Article  Google Scholar 

  20. 20.

    G. Leaf and A. Glaskin, J. Text. Inst., 46, T587 (1955).

    Article  Google Scholar 

  21. 21.

    O. Goktepe and S. Harlock, Text. Res. J., 72, 266 (2002).

    CAS  Article  Google Scholar 

  22. 22.

    A. Kallivretaki, S. Vassiliadis, M. Blaga, and C. Provatidis, Res. J. Text. Apparel, 11, 40 (2007).

    Article  Google Scholar 

  23. 23.

    S. G. Vassiliadis, A. E. Kallivretaki, and C. G. Provatidis, Indian J. Fibre Text. Res., 32, 62 (2007).

    CAS  Google Scholar 

  24. 24.

    H. Dabiryan and A. A. Jeddi, J. Text. Inst., 102, 1065 (2011).

    Article  Google Scholar 

  25. 25.

    B. Karaguzel, “Characterization and Role of Porosity in Knitted Fabrics”, North Carolina State University, 2004.

  26. 26.

    R. T. Ogulata and S. Mavruz, Fibres Text. East. Eur., 18, 71 (2012).

    Google Scholar 

  27. 27.

    M. O. R. Siddiqui and D. Siun, Fibers, 3, 1 (2014).

    Article  Google Scholar 

  28. 28.

    ISO 139, “Standard Atmospheres for Conditioning and Testing of Textiles”, UK, 2005.

  29. 29.

    ASTM D3887, “Standard Specification for Tolerances for Knitted Fabrics”, West Conshohocken, PA, 2008.

  30. 30.

    ASTM D1777-96, “Standard Test Method for Thickness of Textile Materials”, West Conshohocken, PA, 2015.

  31. 31.

    ASTM D3776, “Standard Test Methods for Mass Per Unit Area (Weight) of Fabric”, West Conshohocken, PA, 2017.

  32. 32.

    P. Soltani, M. S. Johari, and M. Zarrebini, Powder Technol., 254, 44 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    BS 5636, “Method for Determination of Permeability of Fabrics to Air”, BSI, UK, 1990.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Parham Soltani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ettehadi, Z., Ajeli, S., Soltani, P. et al. Experimental and CFD Analysis of Air Permeability of Warp-knitted Structures. Fibers Polym 21, 1362–1371 (2020). https://doi.org/10.1007/s12221-020-9258-4

Download citation

Keywords

  • Warp-knitted fabric
  • Air permeability
  • Porosity
  • Loop density
  • Computational fluid dynamics (CFD)