Improvement on Fatigue Performance of 3-D Orthogonal Woven Composite with Nanoclay Modification

Abstract

3-D orthogonal woven composite (3DOWC) has attracted great interest in the industrial and energy fields, due to their excellent mechanical properties. However, due to the poor bonding strength between fiber and epoxy, it’s mechanical properties, especially the fatigue behavior are critical for structural design in the practical applications. The nanoclay modification composite reinforced with 3-D orthogonal woven fabric (3DOWF)/epoxy resin was fabricated using resin infusion under flexible tooling (RIFT). The quasi-static tensile and fatigue behavior of 3-D orthogonal woven composite (3DOWC) in 0 ° and 90 ° inclined to warp direction were evaluated and compared to the pristine one or composite material not modified with nanoclay. The fatigue behavior such as the S-N curves, stress-strain curves, stiffness degradation curves and residual strength were also obtained. The results show that the tensile strength, modulus and the fatigue life were improved effectively due to nanoclay modification. However, the stiffness degradation of nanoclay addition in 90 ° direction was decreased.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K. Sharp, A. Bogdanovich, R. Boyle, J. Brown, and D. Mungalov, Compos. Part. A-Appl. S., 49, 9 (2013).

    Article  Google Scholar 

  2. 2.

    H. Alhussein, J. Zhou, W. J. Cantwell, and R. Umer, J. Compos. Mater., 51, 1703 (2017).

    Article  Google Scholar 

  3. 3.

    M. N. Saleh, A. Yudhanto, G. Lubineau, and C. Soutis, Compos. Struct., 182, 606 (2017).

    Article  Google Scholar 

  4. 4.

    F. Xu, L. Sun, L. Zhu, Y. Shu, H. David, and Y. P. Qiu, Compos. Part. B-Eng., 133, 193 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    N. Isart, B. E. Said, D. S. Ivanov, S. R. Hallett, J. A. Mayugo, and N. Blanco, Compos. Struct., 132, 1219 (2015).

    Article  Google Scholar 

  6. 6.

    B. K. Behera and B. P. Das, Mater. Des., 67, 261 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    A. E. Bogdanovich and M. H. Mohamed, Sampe. J., 45, 8 (2009).

    CAS  Google Scholar 

  8. 8.

    S. Dhiman, P. Potluri, and C. Silva, Compos. Struct., 134, 862 (2015).

    Article  Google Scholar 

  9. 9.

    N. Isart, J. A. Mayugo, N. Blanco, L. Ripoll, A. Solà, and M. Soleret, Compos. Struct., 119, 787 (2015).

    Article  Google Scholar 

  10. 10.

    X. Jiang, Y. Ma, and X. Gao, J. Text. Inst., 109, 1341 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    G. J. Withers, Y. Yu, V. N. Khabashesku, L. Gercone, V. G. Hadjiev, J. M. Souza, and D. C. Davis, Compos. Part. B-Eng., 72, 175 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    N. H. M. Zulfli, A. A. Bakar, and W. S. Chow, High. Perform. Poly., 26, 223 (2014).

    Article  Google Scholar 

  13. 13.

    J. A. M. Ferreira, P. N. B. Reis, J. D. M. Costa, and M. Richardson, J. Thermoplast. Com., 26, 721 (2013).

    Article  Google Scholar 

  14. 14.

    T. P. Mohan, R. Velmurugan, and K. Kanny, Compos. Part. B-Eng., 82, 178 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    N. F. Doğan, M. Bulut, A. Erkliğ, and Ö. Y. Bozkurt, Mater. Res. Express., 6, 085304 (2019).

    Article  Google Scholar 

  16. 16.

    A. Dorigato, S. Morandi, and A. Pegoretti, J. Compos. Mater., 46, 1439 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    C. Wang, X. Gao, and Y. Li, Fiber. Polym., 20, 1495 (2019).

    CAS  Article  Google Scholar 

  18. 18.

    R. Mishra, J. Compos. Mater., 48, 1745 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The National Natural Science Foundation of China (Grant No. 51765051), the Natural Science Foundation of Inner Mongolia (Grant Nos. 2017MS0102 and 2020LH01001) and the Foundation of Inner Mongolia University Scientific Research Projects (Grant No. NJZY19082).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xiaoping Gao or Yonggui Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Wang, C., Wu, W. et al. Improvement on Fatigue Performance of 3-D Orthogonal Woven Composite with Nanoclay Modification. Fibers Polym 22, 256–263 (2021). https://doi.org/10.1007/s12221-020-0161-9

Download citation

Keywords

  • Nanoclay modification
  • 3-D orthogonal woven fabric
  • Composite materials
  • Tension-tension fatigue
  • Stiffness degradation