Skip to main content
Log in

Effect of Vanilla as a Natural Alternative to Traditional Carriers in Polyester Dyeing with Disperse Dyes

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this work, a new natural-based approach was exploited to improve the low temperature carrier method in dyeing process of polyester fabrics. Vanilla was introduced as an alternative substitute for commercial toxic carriers including CTM and Levegal PEW in particular. With use of vanilla in dyeing process, the dye uptake of PET fabrics dyed with C.I. Disperse blue 56 and C.I. Disperse Red 1 was increased significantly. In order to have an economical dyeing process, a two-component mixture of carrier and vanilla was assessed to reduce the consumption of carrier (1/6 of optimum amount) and vanilla. The results showed that vanilla and commercial carriers were compatible and so their mixtures led to higher dye uptake compared to each one individually. The study confirmed that vanilla as an eco-friendly material could substitute the use of commercial carriers in polyester dyeing and led to excellent wash, rub, and better light fastness properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Dasgupta, J. Sikder, S. Chakraborty, S. Curcio, and E. Drioli, J. Environ. Manage., 147, 55 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. R. Kale, A. Banerjee, and G. Katre, Fiber. Polym., 16, 54 (2015).

    Article  CAS  Google Scholar 

  3. S. B. Moore and L. W. Ausley, J. Cleaner Prod., 12, 585 (2004).

    Article  Google Scholar 

  4. M. Albanese, J. Boyenval, P. Marchese, S. Sullalti, and A. Celli, AIMS Mol. Sci., 3, 32 (2016).

    Article  CAS  Google Scholar 

  5. T. Hussain, M. Tausif, and M. Ashraf, J. Cleaner Prod., 108, 476 (2015).

    Article  CAS  Google Scholar 

  6. M. Kodrić, S. Stojanović, B. Marković, and D. Đorđević, Chem. Ind. Chem. Eng. Q., 23, 131 (2017).

    Article  Google Scholar 

  7. A. Al-Etaibi, H. Alnassar, and M. El-Apasery, Molecules, 21, 855 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  8. G. Gedik, O. Avinc, A. Yavas, and A. Khoddami, Fiber. Polym., 15, 261 (2014).

    Article  CAS  Google Scholar 

  9. K. L. Georgiadou, E. G. Tsatsaroni, I. C. Eleftheriadis, and A. H. Kehayoglou, J. Appl. Polym. Sci., 83, 2785 (2002).

    Article  CAS  Google Scholar 

  10. M. A. Iskender, B. Becerir, and A. Koruyucu, Text. Res. J., 75, 462 (2005).

    Article  CAS  Google Scholar 

  11. P. Altay, G. Özcan, M. Tekçin, G. Şahin, and S. Çelik, Ultrason. Sonochem., 42, 768 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Y. Liu, H. C. Kim, and Y. S. Chung, Fiber. Polym., 8, 363 (2007).

    Article  CAS  Google Scholar 

  13. S. Dhouib, A. Lallam, and F. Sakli, Text. Res. J., 76, 271 (2006).

    Article  CAS  Google Scholar 

  14. M. Schuler, Text. Res. J., 27, 352 (1957).

    Article  CAS  Google Scholar 

  15. T. Harifi and M. Montazer, Dyes Pigm., 97, 440 (2013).

    Article  CAS  Google Scholar 

  16. G. Roberts and R. Solanki, J. Soc. Dyers Colour., 95, 226 (1979).

    Article  CAS  Google Scholar 

  17. L. Reed, V. Büchner, and P. B. Tchounwou, Rev. Environ. Health, 22, 213 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. V. Pasquet, A. Perwuelz, N. Behary, and J. Isaad, J. Clean. Prod., 43, 20 (2013).

    Article  CAS  Google Scholar 

  19. B. Mu, H. Xu, and Y. Yang, Color. Technol., 133, 415 (2017).

    Article  CAS  Google Scholar 

  20. M. A. Tavanaie, A. M. Shoushtari, and F. Goharpey, J. Clean. Prod., 18, 1866 (2010).

    Article  CAS  Google Scholar 

  21. J. Wang, X. Li, F. Ge, Z. Cai, and L. Gu, ACS Sustain. Chem. Eng., 4, 3285 (2016).

    Article  CAS  Google Scholar 

  22. F. Carrion-Fite and S. Radei, Eds., “Development Auxiliaries for Dyeing Polyester with Disperse Dyes at Low Temperatures”, IOP Conference Series, Materials Science and Engineering, 2017.

    Google Scholar 

  23. T. H. C. C.Costa, M. C. Feitor, C. Alves, P. B. Freire, and C. M. de Bezerra, J. Mater. Process. Technol., 173, 40 (2006).

    Article  CAS  Google Scholar 

  24. S. Ramachandra Rao and G. A. Ravishankar, J. Sci. Food Agric., 80, 289 (2000).

    Article  Google Scholar 

  25. N. J. Walton, A. Narbad, C. Faulds, and G. Williamson, Curr. Opin. Biotechnol., 11, 490 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. L. S. de Jager, G. A. Perfetti, and G. W. Diachenko, J. Chromatogr. A, 1145, 83 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. A. K. Sinha, S. C. Verma, and U. K. Sharma, J. Sep. Sci., 30, 15 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. G. Lamprecht, F. Pichlmayer, and E. R. Schmid, J. Agric. Food Chem., 42, 1722 (1994).

    Article  CAS  Google Scholar 

  29. A. K. Sinha, U. K. Sharma, and N. Sharma, Int. J. Food Sci. Nutr., 59, 299 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. E. Cicchetti and A. Chaintreau, J. Sep. Sci., 32, 3043 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. W. G. Galetto and P. G. Hoffman, J. Agric. Food Chem., 26, 195 (1978).

    Article  CAS  Google Scholar 

  32. I. Klimes and D. Lamparsky, Int. Flav. Food Addit., 7, 272 (1976).

    CAS  Google Scholar 

  33. B. K. Lavine, D. T. Corona, and U. D. N. T. T.Perera, Microchem. J., 103, 49 (2012).

    Article  CAS  Google Scholar 

  34. A. Tai, T. Sawano, F. Yazama, and H. Ito, Biochim. Biophys. Acta, 1810, 170 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. N. J. Walton, M. J. Mayer, and A. Narbad, Phytochemistry, 63, 505 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. D. McShan and I. Shah, Comput. Chem. Eng., 29, 499 (2005).

    Article  CAS  Google Scholar 

  37. V. Pasquet, A. Perwuelz, N. Behary, and J. Isaad, J. Clean. Prod., 43, 20 (2013).

    Article  CAS  Google Scholar 

  38. J. Koh, “Dyeing with Disperse Dyes”, 1st ed., pp.1–28, Textile Dyeing: Intech, Peter Hauser Ed., China, 2011.

    Google Scholar 

  39. S. Shakra, H. Hanna, and A. Hebeish, Angew. Makromol. Chem., 75, 53 (1979).

    Article  CAS  Google Scholar 

  40. A. Arcoria, M. L. Longo, and G. Parisi, Dyes Pigm., 6, 155 (1985).

    Article  CAS  Google Scholar 

  41. S. M. Burkinshaw, “Chemical Principles of Synthetic Fibre Dyeing”, 1st ed., pp.1–5, Springer Netherlands, 1995.

    Google Scholar 

  42. SDBS I. Spectral Database for Organic Compounds SDBS Japan: National Institute of Advanced Industrial Science and Technology (AIST), 2013.

    Google Scholar 

  43. V. Balachandran and K. Parimala, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 95, 354 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoureh Ghanbar Afjeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalali, S., Rezaei, R., Afjeh, M.G. et al. Effect of Vanilla as a Natural Alternative to Traditional Carriers in Polyester Dyeing with Disperse Dyes. Fibers Polym 20, 86–92 (2019). https://doi.org/10.1007/s12221-019-8482-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-8482-2

Keywords

Navigation