Skip to main content
Log in

In-situ Synthesis of SiO2 Nanoparticles on Polyester Fabric as Benign Multi-purpose Catalysts

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Here, silica nanoparticles (NPs) as safe multi-purpose catalysts were in situ synthesized on PET fabric to achieve a higher quality fabric. The PET fabric was treated in an aqueous solution of sodium silicate and ammonia at boil for 1 h to insitu synthesis silica NPs along with aminolysis of the fabric. Effect of silica NPs as the multi-purpose catalysts on the fabric were subjected to various analysis such as self-cleaning, hydrophilic, antibacterial and antifungal properties and also thermal resistance. The surface morphology, the crystalline structure and elemental analysis were studied by Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and map and energy dispersive X-ray (EDX) analysis. The optimized treated fabric indicated 4 s for the water to spread and 65° for contact angle provided higher hydrophilic properties. Silica NPs on the fabric showed thermo-catalytic behavior protecting against yellowing at high temperature (200 °C for 3 h) proved the higher thermal resistance of the treated fabric. Also, the fabric specified good self-cleaning properties through discoloration of methylene blue solution. Further, the treated fabric proposed 100 % anti-bacterial and anti-fungal activities against Staphylococcus aureus, Escherichia coli and Candida albican along with good cell viability. Overall, this research indicates silica NPs as multi-purpose catalysts including photo, bio and thermo-catalyst on the PET fabric using low price materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Abbate, M. Dassisti, G. M. Cappelletti, G. M. Nicoletti, C. Russo, and G. Ioppolo, J. Clean Prod., 172, 735 (2018).

    Article  CAS  Google Scholar 

  2. Z. Li, Y. Dong, B. Li, P. Wang, Z. Chen, and L. Bian, Mater. Des., 140, 366 (2018).

    Article  CAS  Google Scholar 

  3. M. Montazer and S. Seifollahzadeh, Color. Technol., 127, 322 (2011).

    Article  CAS  Google Scholar 

  4. N. A. Ibrahim, B. M. Eid, H. M. Khalil, and A. A. Almetwally, Appl. Surf. Sci., 448, 95 (2018).

    Article  CAS  Google Scholar 

  5. M. S. Ibrahim, K. M. El Salmawi, and S. M. Ibrahim, Appl. Surf. Sci., 241, 309 (2005).

    Article  CAS  Google Scholar 

  6. J. Lv, Q. Zhou, T. Zhi, D. Gao, and C. Wang, J. Clean Prod., 118, 187 (2016).

    Article  CAS  Google Scholar 

  7. H. B. Zhao, L. Chen, J. C. Yang, X. G. Ge, and Y. Z. Wang, J. Mater. Chem., 22, 19849 (2012).

    Article  CAS  Google Scholar 

  8. J. Škvarla, T. Luxbacher, M. Nagy, and M. Sisol, ACS Appl Mater Interfaces, 2, 2116 (2010).

    Article  CAS  Google Scholar 

  9. M. Dimarogona, E. Nikolaivits, M. Kanelli, P. Christakopoulos, M. Sandgren, and E. Topakas, Biochim. Biophys. Acta, 1850, 2308 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. H. Guo and M. Ulbricht, J. Memb. Sci., 349, 312 (2010).

    Article  CAS  Google Scholar 

  11. J. P. Xu, F. F. Li, J. Ji, and J. C. Shen, Thin Solid Films, 517, 3681 (2009).

    Article  CAS  Google Scholar 

  12. Z. Sanaee, S. Mohajerzadeh, K. Zand, F. S. Gard, and H. Pajouhi, Appl. Surf. Sci., 257, 2218 (2011).

    Article  CAS  Google Scholar 

  13. A. Yamaguchi, F. Uejo, T. Yoda, T. Uchida, Y. Tanamura, T. Yamashita, and N. Teramae, Nat. Mater., 3, 337 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. A. Nazari, M. Montazer, A. Rashidi, M. Yazdanshenas, and M. Anary-Abbasinejad, Appl. Catal., A, 371, 10 (2009).

    Article  CAS  Google Scholar 

  15. A. T. Bell, Science, 299, 1688 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Z. Mirjafary, H. Saeidian, A. Sadeghi, and F. M. Moghaddam, Catal Commun., 9, 299 (2008).

    Article  CAS  Google Scholar 

  17. Y. S. Chi, H. P. Lin, and C. Y. Mou, Appl. Catal., A, 284, 199 (2005).

    Article  CAS  Google Scholar 

  18. M. M. Aboelhassan, A. F. Peixoto, and C. Freire, New J. Chem., 41, 3595 (2017).

    Article  CAS  Google Scholar 

  19. D. Wang, Y. Li, G. L. Puma, C. Wang, P. Wang, W. Zhang, and Q. Wang, Appl. Catal., B, 168, 25 (2015).

    Google Scholar 

  20. V. Allahyarzadeh, M. Montazer, N. H. Nejad, and N. Samadi, J. Appl. Polym. Sci., 129, 892 (2013).

    Article  CAS  Google Scholar 

  21. T. Harifi and M. Montazer, J. Mater. Chem. B, 2, 272 (2014).

    Article  CAS  Google Scholar 

  22. P. A. Zapata, R. Quijada, I. Lieberwirth, and H. Palza, Appl. Catal., A, 407, 181 (2013).

    Article  CAS  Google Scholar 

  23. M. Montazer and M. Maali Amiri, J. Phys. Chem. B, 118, 1453 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. G. L. Davies, J. E. McCarthy, A. Rakovich, and Y. K. Gun'ko, J. Mater. Chem., 22, 7358 (2012).

    Article  CAS  Google Scholar 

  25. D. D. Lovingood, J. R. Owens, M. Seeber, K. G. Kornev, and I. Luzinov, ACS Appl. Mater. Interfaces, 4, 6875 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. C. Heng, M. Liu, P. Wang, K. Wang, X. Zheng, D. Fan, J. Hui, X. Zhang, and Y. Wei, Chem. Eng. J., 296, 268 (2016).

    Article  CAS  Google Scholar 

  27. X. Wang, L. Wang, Q. Su, and J. Zheng, Compos. Sci. Technol., 89, 52 (2013).

    Article  CAS  Google Scholar 

  28. M. Landowski, M. Budzik, and K. Imielinska, J. Compos. Mater., 48, 2805 (2014).

    Article  CAS  Google Scholar 

  29. S. Hashemikia and M. Montazer, Appl. Catal., A, 417, 200 (2012).

    Article  CAS  Google Scholar 

  30. G. Y. Bae, Y. G. Jeong, and B. G. Min, Fiber. Polym., 11, 976 (2010).

    Article  CAS  Google Scholar 

  31. T. Tsuchiya, Y. Kajitani, K. Ohta, Y. Yamada, and S. Sato, Catal Commun., 110, 42 (2018).

    Article  CAS  Google Scholar 

  32. G. Ö. R. A. N. Rikner and E. R. I. K. Grusell, Phys. Med. Biol., 32, 1109 (1987).

    Article  CAS  PubMed  Google Scholar 

  33. T. Okutani, JMMM, 19, 2 (2017).

    Google Scholar 

  34. A. M. Anile and O. Muscato, Continuum. Mech. Thermodyn., 8, 131 (1996).

    Article  Google Scholar 

  35. L. Qu, Z. Luo, and C. Tang, Mater. Res. Bull., 48, 4601 (2013).

    Article  CAS  Google Scholar 

  36. X. Chang, J. Huang, C. Cheng, Q. Sui, W. Sha, G. Ji, S. Deng, and G. Yu, Catal Commun., 11, 460 (2010).

    Article  CAS  Google Scholar 

  37. C. Yuan, X. Liu, M. Liang, C. Zhou, and H. Wang, Sens. Actuator A-Phys., 167, 291 (2011).

    Article  CAS  Google Scholar 

  38. Z. Shan, Y. Xia, Y. Yang, H. Ding, and F. Huang, Mater. Lett., 63, 75 (2009).

    Article  CAS  Google Scholar 

  39. P. Wu, X. Luo, S. Zhang, K. Li, and F. Qi, Appl. Catal., A, 497, 216 (2015).

    Article  CAS  Google Scholar 

  40. H. Palza, R. Vergara, and P. Zapata, Macromol. Mater. Eng., 295, 899 (2010).

    Article  CAS  Google Scholar 

  41. J. Liu and G. Zhang, PCCP, 16, 8178 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. P. Wang, Curr. Opin. Biotechnol., 17, 574 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. H. Ren, Y. Zhou, M. He, R. Xu, B. Ding, X. Zhong, Y. Tong, L. Fan, Z. Cai, H. Shen, and Y. Huang, New J. Chem., 42, 3069 (2018).

    Article  CAS  Google Scholar 

  44. A. Bitar, N. M. Ahmad, H. Fessi, and A. Elaissari, Drug Discov. Today, 17, 1147 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. F. Tang, L. Li, and D. Chen, Adv. Mater., 24, 1504 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. J. Song, H. Kong, and J. Jang, Chem. Comm., 36, 5418 (2009).

    Article  CAS  Google Scholar 

  47. S. Ayazi-Yazdi, L. Karimi, M. Mirjalili, and M. Karimnejad, J. Text. Inst., 108, 856 (2017).

    Article  CAS  Google Scholar 

  48. N. A. Ibrahim, B. M. Eid, E. A. El-Aziz, T. M. A. Elmaaty, and S. M. Ramadan, Int. J. Biol. Macromol., 105, 769 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. D. C. Manatunga, R. M. De Silva, and K. N. De Silva, Appl. Surf. Sci., 360, 777 (2016).

    Article  CAS  Google Scholar 

  50. A. L. Mohamed, M. A. El-Sheikh, and A. I. Waly, Carbohydr. Polym., 102, 727 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. H. Zhang, R. Lamb, and J. Lewis, Sci. Technol. Adv. Mater., 6, 236 (2005).

    Article  CAS  Google Scholar 

  52. A. Berendjchi, R. Khajavi, and M. E. Yazdanshenas, Nanoscale Res. Lett., 6, 594 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  53. A. B. H. Musa, B. Malengier, L. Van Langenhove, and C. Stevens, Mater. Sci. Eng. C., 254, 142004 (2017).

    Google Scholar 

  54. Z. Zhao, J. Zhou, T. Fan, L. Li, Z. Liu, Y. Liu, and M. Lu, Mater. Chem. Phys., 203, 89 (2018).

    Article  CAS  Google Scholar 

  55. R. K. Goyal and A. S. Kapadia, Compos. B Eng., 50, 135 (2013).

    Article  CAS  Google Scholar 

  56. E. C. Lovell, J. Horlyck, J. Scott, and R. Amal, Appl. Catal., A, 546, 47 (2017).

    Article  CAS  Google Scholar 

  57. A. Rimola, M. Fabbiani, M. Sodupe, P. Ugliengo, and G. Martra, ACS Catal., 8, 4558 (2018).

    Article  CAS  Google Scholar 

  58. T. G. Pineda-Vásquez, A. E Casas-Botero, M. E. Ramírez-Carmona, M. M. Torres-Taborda, C. H. Soares, and D. Hotza, Ind. Eng. Chem. Res., 53, 6959 (2014).

    Article  CAS  Google Scholar 

  59. M. P. Gashti, H. Allahyary, P. Nasraei, and M. P. Gashti, Fiber. Polym., 14, 870 (2013).

    Google Scholar 

  60. Q. Zhu, Q. Gao, Y. Guo, C. Q. Yang, and L. Shen, Ind. Eng. Chem. Res., 50, 5881 (2011).

    Article  CAS  Google Scholar 

  61. P. Lerdkajornsuk and S. Charuchinda, JMMM, 20, 63 (2017).

    Google Scholar 

  62. Z. Dahaghin, H. Z. Mousavi, E. Mirparizi, and L. Boutorabi, New J. Chem., 41, 8637 (2017).

    Article  CAS  Google Scholar 

  63. M. Rezaei, M. Schaffie, and M. Ranjbar, Fuel, 113, 516 (2013).

    Article  CAS  Google Scholar 

  64. F. Carosio, A. Di Blasio, F. Cuttica, J. Alongi, A. Frache, and G. Malucelli, Ind. Eng. Chem. Res., 52, 9544 (2013).

    Article  CAS  Google Scholar 

  65. T. Gupta, S. Chaudhary, and R. K. Sharma, J. Clean Prod., 12, 702 (2016).

    Article  CAS  Google Scholar 

  66. M. Eita, H. Arwin, H. Granberg, and L. Wågberg, J. Colloid Interface Sci., 363, 566 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. L. X. Gong, L. L. Hu, J. Zang, Y. B. Pei, L. Zhao, and L. C. Tang, Fiber. Polym., 16, 2056 (2015).

    Article  CAS  Google Scholar 

  68. Y. Sakurai, J. Appl. Phys., 87, 755 (2000).

    Article  CAS  Google Scholar 

  69. A. Ogata, A. Kazusaka, and M. Enyo, J. Phys. Chem., 90, 5201 (1986).

    Article  CAS  Google Scholar 

  70. A. J. Miller, R. G. Leisure, V. A. Mashkov, and F. L. Galeener, Phys. Rev. B, 53, R8818 (1996).

    Article  CAS  Google Scholar 

  71. Y. Sakurai, J. Non-Cryst. Solids, 271, 218 (2000).

    Article  CAS  Google Scholar 

  72. Y. Badr, M. A. El-Wahed, and M. A. Mahmoud, J. Hazard Mater., 154, 245 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. J. T. Seil and T. J. Webster, Int. J. Nanomed., 7, 2767 (2012).

    CAS  Google Scholar 

  74. M. Moritz and M. Geszke-Moritz, Chem. Eng. J., 228, 596 (2013).

    Article  CAS  Google Scholar 

  75. W. Jiang, H. Mashayekhi, and B. Xing, Environ. Pollut., 157, 1619 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Montazer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nozari, B., Montazer, M. & Rad, M.M. In-situ Synthesis of SiO2 Nanoparticles on Polyester Fabric as Benign Multi-purpose Catalysts. Fibers Polym 19, 2564–2573 (2018). https://doi.org/10.1007/s12221-018-8668-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-8668-z

Keywords

Navigation