Skip to main content
Log in

Comparison on Properties and Efficiency of Bacterial and Electrospun Cellulose Nanofibers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Cellulose nanofibers were prepared from bacterial synthesis (bottom up approach) and electrospinning technique (top down method). Significant differences are noticed between bacterial (BC) and electrospun cellulose nanofibers (EC) in their properties such as diameter of fibers, decomposition temperature, surface area and mechanical strength. Filtration of cadmium oxide micro-particles and Staphylococcus aureus bio-aerosol using BC and EC was prominently influenced by their properties. Furthermore, in-vitro release of sparingly water soluble drug, ibuprofen was carried out using BC and EC as carrier materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Sheykhnazari, T. Tabarsa, A. Ashori, A. Shakeri, and M. Golalipour, Carbohydr. Polym., 86, 1187 (2011).

    Article  CAS  Google Scholar 

  2. M. Ul-Islam, T. Khan, and J. K. Park, Carbohydr. Polym., 88, 596 (2012).

    Article  CAS  Google Scholar 

  3. A. Svensson, E. Nicklasson, T. Harrah, B. Panilaitis, D. L. Kaplan, M. Brittberg, and P. Gatenholm, Biomaterials, 26, 419 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. C. W. Kim, D. S. Kim, S. Y. Kang, M. Marquez, and Y. L. Joo, Polymer, 47, 5097 (2006).

    Article  CAS  Google Scholar 

  5. L. Fu, J. Zhang, and G. Yang, Carbohydr. Polym., 92, 1432 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Z. Shi, Y. Zhang, G. O. Phillips, and G. Yang, Food Hydrocolloids, 35, 539 (2014).

    Article  CAS  Google Scholar 

  7. Y. Z. Wan, H. Luo, F. He, H. Liang, Y. Huang, and X. L. Li, Compos. Sci. Technol., 69, 1212 (2009).

    Article  CAS  Google Scholar 

  8. A. W. Carpenter, C. F. de Lannoy, and M. R. Wiesner, Environ. Sci. Technol., 49, 5277 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, Biomacromolecules, 8, 2485 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. W. J. Liu, H. Jiang, and H. Q. Yu, Green Chem., 17, 4888 (2015).

    Article  CAS  Google Scholar 

  11. H. Ma, C. Burger, B. S. Hsiao, and B. Chu, Biomacromolecules, 12, 970 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. M. J. Lundahl, V. Klar, L. Wang, M. Ago, and O. J. Rojas, Ind. Eng. Chem. Res., 56, 8 (2016).

    Article  CAS  Google Scholar 

  13. F. Mohammadkazemi, M. Azin, and A. Ashori, Carbohydr. Polym., 117, 518 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. S. Bielecki in “Bacterial Cellulose”, Biopolymers online (A. Krystynowicz, M. Turkiewicz, and H. Kalinowska Eds.), Vol. 5, pp.37–46, Wiley-VCH Verlag GmbH & Co. KGaA, Germany, 2005.

    Google Scholar 

  15. E. J. Vandamme, S. De Baets, A. Vanbaelen, K. Joris, and P. De Wulf, Polym. Degrad. Stab., 59, 93 (1998).

    Article  CAS  Google Scholar 

  16. M. Iguchi, S. Yamanaka, and A. Budhiono, J. Mater. Sci., 35, 261 (2000).

    Article  CAS  Google Scholar 

  17. S. Thenmozhi, N. Dharmaraj, K. Kadirvelu, and H. Y. Kim, Mater. Sci. Eng., B., 217, 36 (2017).

    Article  CAS  Google Scholar 

  18. K. Y. Lee, L. Jeong, Y. O. Kang, S. J. Lee, and W. H. Park, Adv. Drug Deliv. Rev., 61, 1020 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. L. Meli, J. Miao, J. S. Dordick, and R. J. Linhardt, Green Chem., 12, 1883 (2010).

    Article  CAS  Google Scholar 

  20. A. Frenot, M. W. Henriksson, and P. Walkenstrom, J. Appl. Polym. Sci., 103, 1473 (2007).

    Article  CAS  Google Scholar 

  21. M. Gopiraman, A. W. Jatoi, S. Hiromichi, K. Yamaguchi, H. Y. Jeon, I. M. Chung, and I. S. Kim, Carbohydr. Polym., 149, 51 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. V. Thavasi, G. Singh, and S. Ramakrishna, Energy Environ. Sci., 1, 205 (2008).

    Article  CAS  Google Scholar 

  23. N. Daels, S. De Vrieze, I. Sampers, B. Decostere, P. Westbroek, A. Dumoulin, P. Dejans, K. De Clerck, and S. W. H. Van Hulle, Desalination, 275, 285 (2011).

    Article  CAS  Google Scholar 

  24. M. Aliabadi, M. Irani, J. Ismaeili, H. Piri, and M. Javad Parnian, Chem. Eng. J., 220, 223 (2013).

    Article  CAS  Google Scholar 

  25. A. R. Keshtkar, M. Irani, and M. A. Moosavian, J. Radioanal. Nucl. Chem. 295, 563 (2013).

    Article  CAS  Google Scholar 

  26. C. Xiang and N. C. Acevedo, Polymers, 9, 179 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  27. A. J. Silvestre, C. S. Freire, and C. P. Neto, Expert Opin Drug Deliv., 11, 1113 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. M. R. Prausnitz and R. Langer, Nat. Biotechnol., 26, 1261 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. I. F. Almeida, T. Pereira, N. H. C. S. Silva, F. P. Gomes, A. J. D. Silvestre, C. S. R. Freire, and P. C. Costa, Biopharm., 86, 332 (2014).

    Article  CAS  Google Scholar 

  30. J. A. Subramony, Int. J. Pharm., 455, 14 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. S. M. Al-Saidan, J. Controlled Release, 100, 199 (2004).

    Article  CAS  Google Scholar 

  32. F. Cilurzo, E. Alberti, P. Minghetti, C. G. M. Gennari, A. Casiraghi, and L. Montanari, J. Pharm., 386, 71 (2010).

    CAS  Google Scholar 

  33. L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, Text. Res. J., 29, 786 (1959).

    Article  CAS  Google Scholar 

  34. W. K. Czaja, D. J. Young, M. Kawecki, and R. M. Brown, Biomacromolecules, 8, 1 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Z. Y. Wu, C. Li, H. W. Liang, J. F. Chen, and S. H. Yu, Angew. Chem., 125, 10 (2013).

    Google Scholar 

  36. Y. Wu, F. Wang, and Y. Huang, Compos. Sci. Technol., 159, 70 (2018).

    Article  CAS  Google Scholar 

  37. H. Yousefi, M. Faezipour, S. Hedjazi, M. M. Mousavi, Y. Azusa, and A. H. Heidari, Ind. Crops Prod., 43, 737 (2013).

    Article  CAS  Google Scholar 

  38. S. Mohammadzadehmoghadam, Y. Dong, and I. Jeffery Davies, J. Polym. Sci. Part B: Polym. Phys., 53, 1171 (2015).

    Article  CAS  Google Scholar 

  39. M. Gopiraman, H. Bang, G. Yuan, C. Yin, K. H. Song, J. S. Lee, I-M. Chung, R. Karvembu, and I. S. Kim, Carbohydr. Polym., 132, 554 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. K. Li, J. Wang, X. Liu, X. Xiong, and H. Liu, Carbohydr. Polym., 90, 1573 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. M. C. I. M. Amin, N. Ahmad, N. Halib, and I. Ahmad, Carbohydr. Polym., 88, 465 (2012).

    Article  CAS  Google Scholar 

  42. R. Krishnan, S. Sundarrajan, and S. Ramakrishna, Macromol. Mater. Eng., 298, 1034 (2013).

    Article  CAS  Google Scholar 

  43. E. Trovatti, C. S. Freire, P. C. Pinto, I. F. Almeida, P. Costa, A. J. Silvestre, C. P. Net, and C. Rosado, Int. J. Pharm., 435, 83 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Kadirvelu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiji, S., Thenmozhi, S. & Kadirvelu, K. Comparison on Properties and Efficiency of Bacterial and Electrospun Cellulose Nanofibers. Fibers Polym 19, 2498–2506 (2018). https://doi.org/10.1007/s12221-018-8527-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-8527-y

Keywords

Navigation