Skip to main content
Log in

Production of Metal Oxide Containing Antibacterial Coated Textile Material and Investigation of the Mechanism of Action

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The main aim of this study was to produce PVC coated textile based antibacterial textile material and to investigate the antibacterial mechanism with detailed analyzes. Metal oxide (calcium oxide, zinc oxide, magnesium oxide) powders were used to provide antibacterial functionality to coated materials. Metal oxide concentrations were varied between 5–35 %. Antibacterial tests were performed according to ISO 22196–2011 standard. Antibacterial efficiency of the samples was tested for each metal oxide type and concentration with L. innocua species. The antibacterial mechanism was investigated with ESR technique, fluorescent microscobe and microplate reader using DCFH-DA probe, UV-vis spectrometer using fluorescein probe. The results indicated that the antibacterial effect of used metal oxides was strongly arisen from radical oxygen species. The morphology of coatings was investigated with SEM and the distribution of metal oxide particles on the surface was examined with EDX analysis and EDX mapping. The changes on the molecular basis of the coating due to the metal oxide addition was analyzed with FT-IR spectroscopy. High antibacterial efficiencies (up to 100 %) were detected. It is suggested that the non-toxic metal oxides can be used as an effective and economically feasible alternative to conventional antibacterial additives for industrial applications such as conveyor belts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Heide, Trends Food Sci. Technol., 18, 89 (2007).

    Article  CAS  Google Scholar 

  2. F. Perez-Rodriguez, A. Valero, E. Carrasco, R. M. Garcia, and G. Zurera, Trends Food Sci. Technol., 19, 131 (2008).

    Article  CAS  Google Scholar 

  3. N. Cioffi and M. Rai, “Nano-Antimicrobials”, London, England, 2012.

    Book  Google Scholar 

  4. A. Annath, S. Dharaneedharan, H. Seo, M. Heo, and J. Boo, Chem. Eng. J., 322, 742 (2017).

    Article  CAS  Google Scholar 

  5. T. O. Okyay, R. K. Bala, H. N. Nguyen, R. Atalay, and Y. Bayam, RSC Adv., 5, 2568 (2015).

    Article  CAS  Google Scholar 

  6. V. B. Schwartz, F. Thetiot, S. Ritz, S. Pütz, L. Choritz, A. Lappas, R. Förch, K. Landfester, and U. Jonas, Adv. Funct. Mater., 22, 2376 (2012).

    Article  CAS  Google Scholar 

  7. M. Jaissai, S. Baruah, and J. Dutta, Beilstein J. Nanotechnol., 3, 684 (2012).

    Article  CAS  Google Scholar 

  8. M. Li, L. Zhu, and D. Lin, Environ. Sci. Technol., 45, 1977 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, and D. Mohamad, Nano -Micro Lett., 7, 219 (2015).

    Article  CAS  Google Scholar 

  10. J. Sawai, H. Igarashi, A. Hashimoto, T. Kokugan, and M. Shimizu, J. Chem. Eng. Jpn., 28, 288 (1995).

    Article  CAS  Google Scholar 

  11. Y. Xie, Y. He, P. L. Irwin T. Jin, and X. Shi, Appl. Environ. Microbiol., 77, 2325 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. O. Yamamoto, Int. J. Inorg. Mater., 3, 643 (2001).

    Article  CAS  Google Scholar 

  13. L. Zhang, Y. Jiang, Y. Ding, N. Daskalakis, L. Jeuken, M. Povey, A. J. O’Neil, and D. W. York, J. Nanopart Res., 12, 1625 (2010).

    Article  CAS  Google Scholar 

  14. J. M. Yousef and E. N. Danial, J. Health Sci., 2, 38 (2012).

    Google Scholar 

  15. K. Hirota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa, and H. Sugimoto, Ceram. Int., 36, 497 (2010).

    Article  CAS  Google Scholar 

  16. L. Huang, D. Li, Y. Lin, D. G. Evans, and X. Duan, J. Inorg. Biochem., 99, 986 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. M. Fiedot, I. Maliszewska, O. Rac-Rumijowska, P. Suchorska-Wozniak, A. Lewinska, and H. Teterycz, Materials, 10, 353 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  18. X. Xu, D. Chen, Z. Yi, M. Jiang, L. Wang, Z. Zhou, X. Fan, Y. Wang, and D. Hui, Langmuir, 29, 5573 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. V. L. Prasanna and R. Vijayaraghavan, Langmuir, 31, 9155 (2015).

    Article  CAS  Google Scholar 

  20. D. Wang, L. Zhao, H. Ma, H. Zhang, and L. Guo, Environ. Sci. Technol., 51, 10137 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Farouk, A. Moussa, S. Ulbricht, M. Schollmeyer, and E. Textor, Text. Res. J., 84, 40 (2014).

    Article  CAS  Google Scholar 

  22. J. Sawai, E. Kawada, F. Kanou, H. Igarashi, A. Hashimoto, T. Kokugan, and M. Shimizu, J. Chem. Eng. Jpn., 29, 627 (1996).

    Article  CAS  Google Scholar 

  23. J. Sawai, H. Kajima, A. Hashimoto, S. Shoji, T. Sawaki, and A. Hakoda, World J. Microbiol. Biotechnol., 16, 187 (2000).

    Article  CAS  Google Scholar 

  24. A. Roy and S. S. Gauri, J. Biomed. Nanotechnol., 9, 1 (2013).

    Article  CAS  Google Scholar 

  25. S. Makhluf, R. Dror, Y. Nitzan, Y. Abramovic, R. Jelinek, and A. Gedanken, Adv. Funct. Mater., 15, 1708 (2005).

    Article  CAS  Google Scholar 

  26. J. Sawai, J. Microbiol. Methods, 54, 177 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. K. R. Raghupati, R. T. Koodali, and A. C. Manna, Langmuir, 27, 4020 (2011).

    Article  CAS  Google Scholar 

  28. A. Roy, S. S. Gauri, M. Bhattacharya, and J. Bhattacharya, J. Biomed. Nanotechnol., 9, 1 (2013).

    Article  CAS  Google Scholar 

  29. Y. Xu and M. A. A. Schoonen, Am. Mineral., 85, 543 (2000).

    Article  CAS  Google Scholar 

  30. Y. Li, W. Zhang, J. Niu, and Y. Chen, ACS Nano, 6, 5164 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. W. He, Y. Liu, W. G. Wamer, and J. Yin, J. Food Drug Anal., 22, 49 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. V. Roubaud, S. Sankarapandi, P. Kuppusamy, P. Tordo, and J. L. Zweier, Anal. Biochem., 247, 404 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. A. Samouilov, V. Roubaud, P. Kuppusamy, and J. L. Zweier, Anal. Biochem. 334, 145 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. A. Aranda, L. Sequedo, L. Tolosa, G. Quintas, E. Burello, J. V. Castell, and L. Gombau, Toxicol. in Vitro, 27, 954 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. D. Armstrong, “Advanced Protocols in Oxidative Stress II”, New York, USA, 2010.

    Book  Google Scholar 

  36. R. P. Rastogi, S. P. Singh, D. Hader, and R. P. Sinha, Biochem. Biophys. Res. Commun., 397, 603 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. J. Hua, M. Shao, L. Cheng, X. Wang, Y. Fu, and D. D. D. Ma, J. Phys. Chem. Solids, 70, 192 (2009).

    Article  CAS  Google Scholar 

  38. M. Bardhan, G. Mandal, and T. Ganguly, J. Nanosci. Nanotechnol., 11, 3418 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. E. C. Friedly, MS Thesis, University of Arkansas. Arkansas, USA, 2007.

  40. B. Mizrak, Personal Contact. Rultrans Transmisyon A. S. Kemalpasa/Izmir-Turkey, 2016.

    Google Scholar 

  41. A. Lipovsky, Z. Tzitrinovich, H. Friedmann, G. Applerot, A. G. Lubart, and R. Lubart, J. Phys. Chem. C, 113, 15997 (2009).

    Article  CAS  Google Scholar 

  42. G. Applerot, A. Lipovsky, R. Dror, N. Perkas, Y. Nitzan, R. Lubart, and A. Gedanken, Adv. Funct. Mater., 19, 842 (2009).

    Article  CAS  Google Scholar 

  43. S. L. Baum, I. G. M. Anderson, R. R. Baker, D. M. Murphy, and C. C. Rowlands, Anal. Chim. Acta, 481, 1 (2003)

    Article  CAS  Google Scholar 

  44. UK Standards for Microbiology Investigations - Identification of Listeria Species, and other Non-sporing Gram Positive Rods (except Corynebacterium). Public Health England. Bacteriology–Identification, ID 3, Issue no: 3. 1, Issue date: 29. 10. 2014.

  45. M. Kurth, P. C. J. Graat, H. D. Carstanjen, and E. J. Mittemeijer, Surf. Interface Anal., 38, 931 (2006).

    Article  CAS  Google Scholar 

  46. E. Finkelstein, G. M. Rosen, and E. J. Rauckman, J. Am. Chem. Soc., 102, 4994 (1980).

    Article  CAS  Google Scholar 

  47. S. Ramesh, K. H. Leen, K. Kumutha, and A. K. Arof, Spectrochim. Acta, Part A, 66, 1237 (2007).

    Article  CAS  Google Scholar 

  48. M. A. Silva, M. G. A. Vieria, A. C. G. Maçumoto, and M. M. Beppu, Polym. Test., 30, 478 (2011).

    Article  CAS  Google Scholar 

  49. D. L. Tabb and J. L. Koenig, Macromolecules, 8, 929 (1975).

    Article  CAS  Google Scholar 

  50. S. Nasrazadani and E. Eureste, “Application of FTIR for Quantitative Lime Analysis”, 5-9028-01 Project Report University of North Texas. Texas, USA, 2008.

    Google Scholar 

  51. P. H. Daniels, J. Vinyl Add. Tech., 15, 219 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gorkem Gedik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gedik, G., Aksit, A., Engin, B. et al. Production of Metal Oxide Containing Antibacterial Coated Textile Material and Investigation of the Mechanism of Action. Fibers Polym 19, 2548–2563 (2018). https://doi.org/10.1007/s12221-018-8306-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-8306-9

Keywords

Navigation