Skip to main content
Log in

Improved Mechanical and Electrical Properties of Carbon Nanotube Yarns by Wet Impregnation and Multi-ply Twisting

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Carbon nanotube (CNT) fibers, composed entirely of CNT bundles, have inferior mechanical properties as adjacent CNTs slide past each other when an external force is applied. Numerous surface coatings have been tried, but all these approaches have caused severe damage to the electrical properties of the resulting fibers. As a measure to address these problems, we present an effective method for the enhanced mechanical and electrical properties of CNT yarns by wet impregnation with a poly(vinylidene fluoride)/ionic liquid (PVDF/IL) composite and subsequent multiply twisting. Single twisting of three-ply yarns showed a superior electrical conductivity of up to 1500 S/cm, while braided twisting of pretwisted yarns exhibited excellent tensile performances, with a load capacity of 3.2 N, tensile strength of 12.7 g/de, and tensile strain of 35.2 %. The polarized Raman measurements confirmed the elevated CNT quality and high alignment of CNT bundles. The proposed approach of impregnated and twisted CNT yarns will lead to a variety of potential applications in sensors/actuators, e-textile devices, and fiber-shaped electrodes, which simultaneously requires ultra-light weight and good electrical and tensile properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. S. Choi, J. T. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. L. Fang, N. Jiang, Z. F. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. L. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, Science, 357, 773 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Y. B. Li, Y. Y. Shang, X. D. He, Q. Y. Peng, S. Y. Du, E. Z. Shi, S. T. Wu, Z. Li, P. X. Li, and A. Y. Cao, ACS Nano, 7, 8128 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. O. K. Park, Y. Jeong, J. K. Lee, and B. C. Ku, Sci. Adv. Mater., 9, 227 (2017).

    Article  CAS  Google Scholar 

  4. S. Y. Kim and D. H. Kim, Text. Sci. Eng., 53, 7 (2016).

    Article  Google Scholar 

  5. J. Song, S. Kim, S. Yoon, D. Cho, and Y. Jeong, Fiber. Polym., 15, 762 (2014).

    Article  CAS  Google Scholar 

  6. E. Bekyarova, E. T. Thostenson, A. Yu, H. Kim, J. Gao, J. Tang, H. T. Hahn, T.-W. Chou, M. E. Itkis, and R. C. Haddon, Langmuir, 23, 3970 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. D. W. Chae, S. C. Hawkins, and C. Huynh, Text. Sci. Eng., 55, 71 (2018).

    Google Scholar 

  8. A. T. Sepúlveda, R. G. de Villoria, J. C. Viana, A. J. Pontes, B. L. Wardle, and L. A. Rocha, Nanoscale, 5, 4847 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. D. W. Cho and Y. J. Jeong, Mater. Lett., 160, 503 (2015).

    Article  CAS  Google Scholar 

  10. G. Park, Y. Jung, G. W. Lee, J. P. Hinestroza, and Y. Jeong, Polymer, 13, 874 (2012).

    CAS  Google Scholar 

  11. K. Liu, Y. H. Sun, R. F. Zhou, H. Y. Zhu, J. P. Wang, L. Liu, S. S. Fan, and K. L. Jiang, Nanotechnology, 21, 045708 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. M. H. Miao, Carbon, 49, 3755 (2011).

    Article  CAS  Google Scholar 

  13. Y. L. Li, I. A. Kinloch, and A. H. Windle, Science, 304, 276 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. M. Kumar and Y. Ando, J. Nanosci. Nanotechnol., 10, 3739 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. P. Bilalis, D. Katsigiannopoulos, A. Avgeropoulos, and G. Sakellariou, RSC Adv., 4, 2911 (2014).

    Article  CAS  Google Scholar 

  16. R. Ma, J. Lee, D. Choi, H. Moon, and S. Baik, Nano Lett., 14, 1944 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. T. Torimoto, T. Tsuda, K. Okazaki, and S. Kuwabata, Adv. Mater., 22, 1196 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. B. C. Kim, J. Y. Hong, G. G. Wallace, and H. S. Park, Adv. Energy Mater., 5, 1500959 (2015).

    Article  CAS  Google Scholar 

  19. Y. L. Zi, L. Lin, J. Wang, S. H. Wang, J. Chen, X. Fan, P. K. Yang, F. Yi, and Z. L. Wang, Adv. Mater., 27, 2340 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. V. Cauda, S. Stassi, K. Bejtka, and G. Canayese, ACS Appl. Mater. Interfaces, 5, 6430 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. G. X. Chen, S. C. Zhang, Z. Zhou, and Q. F. Li, Polym. Compos., 36, 94 (2015).

    Article  CAS  Google Scholar 

  22. T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya, Science, 321, 1468 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Y. Shim and H. J. Kim, ACS Nano, 3, 1693 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. P. F. Salazar, K. J. Chan, S. T. Stephens, and B. A. Cola, J. Electrochem. Soc., 161, 481 (2014).

    Article  CAS  Google Scholar 

  25. Q. Wang, J. F. Dai, W. X. Li, Z. Q. Wei, and J. L. Jiang, Compos. Sci. Technol., 68, 1644 (2008).

    Article  CAS  Google Scholar 

  26. D. E. Esentalovich, R. J. Headrick, F. Mirri, J. Hao, N. Behabtu, C. C. Young, and M. Pasquali, ACS Appl. Mater. Interfaces, 9, 36189 (2017).

    Article  CAS  Google Scholar 

  27. B. Han, X. Xue, Y. Xu, Z. Zhao, E. Guo, C. Liu, L. Luo, and H. Hou, Carbon, 122, 496 (2017).

    Article  CAS  Google Scholar 

  28. J. Jager, J. A. Juijn, C. J. M. van den Heuvel, and R. A. Huijts, J. Appl. Polym. Sci., 57, 1429 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong S. Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.R., Park, J., Jeong, Y. et al. Improved Mechanical and Electrical Properties of Carbon Nanotube Yarns by Wet Impregnation and Multi-ply Twisting. Fibers Polym 19, 2478–2482 (2018). https://doi.org/10.1007/s12221-018-8140-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-8140-0

Keywords

Navigation