Skip to main content
Log in

Mechanical and Dynamic Mechanical Studies on Epoxy-Cobaltous Sulfate Polymer Hybrids

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Cobaltous sulfate heptahydrate (CoSO4·7H2O) was incorporated as filler into diglycidyl ether of bisphenol A (DGEBA) based epoxy resin system, to prepare organic-inorganic polymer hybrid materials. Mechanical tensile studies and dynamic mechanical analysis (DMA) were carried out in order to study the static and dynamic mechanical properties of the prepared hybrid films. Mechanical tensile studies were carried out at room temperature, at a test speed of 30 mm/min. Highest tensile strength of 24.74±2.42 MPa was achieved for 4.44 wt% filler level (FL), along with an increase in the value of Young’s modulus. Storage modulus (E′), loss modulus (E″), damping factor (tan δ) were obtained by DMA studies. Glass transition temperature (Tg) was obtained for pure epoxy and filled epoxy, for various FLs varying from 0.28 wt% to 5.00 wt%. Pure epoxy showed highest Tg value compared to filled epoxy hybrids. Highest storage modulus of 9.5 GPa was obtained for 2.22 wt% FL, which also showed highest loss modulus peak. Parameters like effectiveness coefficient (C) and crosslink density were calculated from the storage modulus data. Loss modulus and tan δ curves were analyzed to study the energy dissipation properties of prepared hybrid films. Activation energy (Ea) value for glass transition was obtained from damping factor (tan δ), which showed highest Ea value of 630.5 kJmol-1, for 4.44 wt% FL. DMA studies for various FLs were carried out at different test frequencies in order to study the changes in dynamic mechanical properties of the prepared hybrid materials with respect to frequency

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. B. Johnsen, A. J. Kinloch, R. D. Mohammed, A. C. Taylor, and S. Sprenger, Polymer, 48, 530 (2007).

    Article  CAS  Google Scholar 

  2. H. Kim, Fiber. Polym., 13, 762 (2012).

    Article  CAS  Google Scholar 

  3. S.-Y. Fu, X.-Q. Feng, B. Lauke, and Y.-W. Mai, Composites Part B, 39, 933 (2008).

    Article  CAS  Google Scholar 

  4. S. N. Goyanes, P. G. Konig, and J. D. Marconi, J. Appl. Polym. Sci., 88, 883 (2003).

    Article  CAS  Google Scholar 

  5. K. C. Radford, J. Mater. Sci., 6, 1286 (1971).

    Article  CAS  Google Scholar 

  6. K. S. Harishanand, H. Nagabhushana, B. M. Nagabhushana, P. Panda, R. Gupta, M. S. Muruli, N. Raghavendra, and K. R. Vishnu Mahesh, Adv. Polym. Sci. Tech.: An Int. J. (ISSN: 2277–7164), 3, 7 (2013).

    Google Scholar 

  7. L. E. Nielsen, J. Compos. Mater., 1, 100 (1967).

    Article  CAS  Google Scholar 

  8. J. Spanoudakis and R. J. Young, J. Mater. Sci., 19, 487 (1984).

    Article  CAS  Google Scholar 

  9. O. Sindt, J. Perez, and J. F. Gerard, Polymer, 37, 2989 (1996).

    Article  CAS  Google Scholar 

  10. G. Sui, S. Jana, A. Salehi-khojin, S. Neema, W. H. Zhong, H. Chen, and Q. Huo, J. Appl. Polym. Sci., 109, 247 (2008).

    Article  CAS  Google Scholar 

  11. P. V. Joseph, G. Mathew, K. Joseph, G. Groeninckx, and S. Thomas, Composites Part A, 34, 275 (2003).

    Article  CAS  Google Scholar 

  12. V. G. Geethamma, R. Asaletha, N. Kalarikkal, and S. Thomas, Resonance, 19, 821 (2014).

    Article  CAS  Google Scholar 

  13. I. S. Elashmawi and E. M. Abdelrazek, J. Appl. Polym. Sci., 115, 2691 (2010).

    Article  CAS  Google Scholar 

  14. K. Kumari, V. Ali, R. Gupta, G. B. V. S. Lakshmi, and M. Zulfequar, Chitkara Chem. Rev., 1, 35 (2013).

    Article  Google Scholar 

  15. P. Sachdev, M. Banerjee, and G. S. Mukherjee, Def. Sci. J., 64, 290 (2014).

    Article  CAS  Google Scholar 

  16. P. Ghosh, A. Sarkar, A. K. Meikap, S. K. Chattopadhyay, S. K. Chatterjee, and M. Ghosh, J. Phys. D: Appl. Phys., 39, 3047 (2006).

    Article  CAS  Google Scholar 

  17. H. Wang, S. P. Wong, W. Y. Cheung, N. Ke, M. F. Chiah, H. Liu, and X. X. Zhang, J. Appl. Phys., 88, 2063 (2000).

    Article  CAS  Google Scholar 

  18. B. K. Pandey, A. K. Shahi, R. K. Swarnkar, and R. Gopal, Sci. Adv. Mater., 4, 537 (2012).

    Article  CAS  Google Scholar 

  19. J. D. Donaldson and D. Beyersmann, “Ullmann’s Encyclopedia of Industrial Chemistry”, https://doi.org/10.1002/14356007.a07_281.pub2, Vol. 9, pp.429–465, Wiley-VCH, Weinheim, 2012.

    Google Scholar 

  20. I. Ozsoy, A. Demirkol, A. Mimaroglu, H. Unal, and Z. Demir, J. Mech. Eng., 61, 601 (2015).

    Article  Google Scholar 

  21. B. Qi, Z. Yuan, S. Lu, K. Liu, S. Li, L. Yang, and J. Yu, Fiber. Polym., 15, 326 (2014).

    Article  CAS  Google Scholar 

  22. C. Komalan, K. E. George, P. A. S. Kumar, K. T. Varughese, and S. Thomas, eXPRESSpolym. Lett., 1, 641 (2007).

    Article  CAS  Google Scholar 

  23. N. Saba, M. Jawaid, O. Y. Alothman, and M. T. Paridah, Constr. Build. Mater, 106, 149 (2016).

    Article  CAS  Google Scholar 

  24. L. A. Pothan, Z. Oommen, and S. Thomas, Compos. Sci. Technol., 63, 283 (2003).

    Article  CAS  Google Scholar 

  25. P. B. Messersmith and E. P. Giannelis, Chem. Mater., 6, 1719 (1994).

    Article  CAS  Google Scholar 

  26. Steven Nahm, “Use of Dynamic Mechanical Analysis in Thermoset Resin Development (For Composites Applications)”, Composites 2001 Convention and Trade Show, Composites Fabrication Association, USA, October, 2001.

    Google Scholar 

  27. H. Li, E. Burts, K. Bears, Q. Ji, J. J. Lesko, D. A. Dillard, and J. S. Riffle, J. Compos. Mater., 34, 1512 (2000).

    Article  CAS  Google Scholar 

  28. L. W. Hill, Prog. Org. Coat., 31, 235 (1997).

    Article  CAS  Google Scholar 

  29. John D. Ferry, “Viscoeleastic Properties of Polymers”, 3rd ed., John wiley & Sons, New York, 1980.

    Google Scholar 

  30. V. Selvakumar and N. Manoharan, Indian. J. Sci. Tech., 7, 136 (2014).

    Google Scholar 

  31. S. Mohanty, S. K. Verma, and S. K. Nayak, Compos. Sci. Technol., 66, 538 (2006).

    Article  CAS  Google Scholar 

  32. N. Hameed, P. A. Sreekumar, B. Francis, W. Yang, and S. Thomas, Composites Part A, 38, 2422 (2007).

    Article  CAS  Google Scholar 

  33. K. Yu, M. Wang, J. Wu, K. Qian, J. Sun, and X. Lu, Nanomaterials, 6, 89 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  34. F. M. Margem, S. N. Monteiro, J. B. Neto, R. J. S. Rodriguez, and B. G. Soares, Revista Materia, 15, 164 (2010).

    Article  Google Scholar 

  35. Y. Sun, Z. Zhang, K. Moon, and C. P. Wong, J. Polym. Sci. Part B: Polym. Phys., 42, 3849 (2004).

    Article  CAS  Google Scholar 

  36. X. F. Yao, H. Y. Yeh, D. Zhou, and Y. H. Zhang, J. Compos. Mater., 40, 371 (2006).

    Article  CAS  Google Scholar 

  37. K. C. Yung, B. L. Zhu, T. M. Yue, and C. S. Xie, J. Appl. Polym. Sci., 116, 225 (2010).

    Article  CAS  Google Scholar 

  38. V. G. Geethamma, G. Kalaprasad, G. Groeninckx, and S. Thomas, Composites Part A, 36, 1499 (2005).

    Article  CAS  Google Scholar 

  39. M. Ashida, T. Noguchi, and S. Mashimo, J. Appl. Polym. Sci., 29, 661 (1984).

    Article  CAS  Google Scholar 

  40. H. L. Ornaghi Jr., A. S. Bolner, R. Fiorio, A. J. Zattera, and S. C. Amico, J. Appl. Polym. Sci., 118, 887 (2010).

    CAS  Google Scholar 

  41. J. Rault, J. Non-cryst. Solids, 271, 177 (2000).

    Article  CAS  Google Scholar 

  42. W. M. Nakitare and A. S. Merenga, Int. J. Appl. Sci. Eng. Res., 3, 464 (2014).

    CAS  Google Scholar 

  43. L. A. Pothan, S. Thomas, and G. Groeninckx, Composites Part A, 37, 1260 (2006).

    Article  CAS  Google Scholar 

  44. J. M. G. Cowie and V. Arrighi, “Polymers: Chemistry and Physics of Modern Materials”, 3rd ed., CRC Press, Taylor and Francis Group, UK, 2007.

    Book  Google Scholar 

  45. L. Ibarra, A. Macias, and E. Palma, J. Appl. Polym. Sci., 57, 831 (1995).

    Article  CAS  Google Scholar 

  46. K. Cho, B. H. Lee, K. M. Hwang, H. Lee, and S. Choe, Polym. Eng. Sci., 38, 1969 (1998).

    Article  CAS  Google Scholar 

  47. C. Wisniewki, G. Marin, and P. H. Monge, Eur. Polym. J., 21, 479 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blaise Lobo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devangamath, S.S., Lobo, B., Masti, S.P. et al. Mechanical and Dynamic Mechanical Studies on Epoxy-Cobaltous Sulfate Polymer Hybrids. Fibers Polym 19, 1490–1499 (2018). https://doi.org/10.1007/s12221-018-8031-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-8031-4

Keywords

Navigation